

GEFÖRDERT VOM

Erstellt im Rahmen der Roadmapping-Aktivitäten im Kopernikus-Projekt

P2X: Erforschung, Validierung und Implementierung von "Power-to-X"-Konzepten
gefördert durch das Bundesministerium für Bildung und Forschung.

FKZ: 03SFK2W0-2 (DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V.)

3. Roadmap des Kopernikus-Projektes "P2X": Phase II

TECHNISCHER ANHANG

Transformation – Anwendungen – Potenziale

Herausgebende:

Florian Ausfelder, Hanna Dura

INHALT

1. ANHAN	G ZU KAF	TITEL 1	
2. ANHAN	G ZU KAF	PITEL 2	4
3. ANHAN			
Method	ische Hin	tergründe	
3.1	L Energ	giemodell	4
	3.1.1	Allgemeine Angaben	4
	3.1.2	Annahmen zur Kostenentwicklung	Ē
	3.1.3	Annahmen zum Industriesektor	6
	3.1.4	Weitere Annahmen	6
3.2	Life C	cycle Assessment	7
	3.2.1	Wertschöpfungsketten-übergreifende Annahmen	7
	3.2.2	Ausgewertete Umweltkategorien	7
3.3	3 Techr	no-ökonomische Analyse	8
3.4	Akzej	otanz	10
3.5	Poter	nzialanalyse	14
	3.5.1	Relevante Kriterien und Cluster für eine PtX-Potenzialanalyse	14
	3.5.2	Zu untersuchende Länder	15
	3.5.3	Verwendete Parameter der Potenzialanalyse	17
	3.5.4	Annahmen für die zeitliche Entwicklung der CO ₂ -Punktquellen in der Potenzialanalyse	17
4. ANHAN	G ZU KAF	PITEL 4	
Einbetti	ung der <i>A</i>	Analysen in den Gesamtkontext der Energiewende und Klimaschutzziele	19
4.1	LÜbergr	reifende Energiesystemmodellierung	19
	4.1.1	Energiesystemmodellierung – Energie- und Rohstoffnachfrage	20
	4.1.2	Energiesystemmodellierung – Stromerzeugung und Speicherbedarf	21
4.2	Stron	n als Haupteinflussfaktor für die ökologischen und ökonomischen Bewertungen	24
	4.2.1	Umweltauswirkungen der Stromerzeugung	24
5. ANHAN	G ZU KAF	PITEL 5	
Verkehr	-		25
5.1	L Entwi	icklung und Einordnung des Verkehrssektors	25
5.2	2 Proze	ssbeschreibung FT-Kraftstoffe	26
5.3	3 Life C	Cycle Assessment	27
5.4	Techi	no-ökonomische Analyse	29
5.5	Poter	nzialanalyse synthetischer Kraftstoffe im Verkehrssektor	30
	5.5.1	Berechnungsgrundlagen zur Potenzialanalyse von FT-Kraftstoffen	30
	5.5.2	Annahmen zur Nachfrage von FT-Kraftstoffen	31
	5.5.3	Detaillierte Ergebnisse zur Potenzialanalyse von FT-Kraftstoffen	32

TECHNISCHER ANHANG

https://www.kopernikus-projekte.de/projekte/p2x/#roadmaps

- 4 4	HILLAND	C 711	LADITE	
ъ Д Б	инак	K- /II	KΔPITFI	b

Chemisc	he Grundstoffe	33
6.1	Entwicklung und Einordnung chemischer Grundstoffe	33
6.2	Biologische Umwandlung zu Butanol	34
6.3	PME-Polymere	33
	6.3.1 Life Cycle Assessment	33
	6.3.2 Techno-ökonomische Analyse	38
6.4	Potenzialanalyse	4:
	6.4.1 Annahmen zur Nachfrage von FT-Naphtha	43
	6.4.2 Detaillierte Ergebnisse zur Potenzialanalyse von FT-Naphtha	43
7. ANHANG	S ZU KAPITEL 7	
Energieti	räger für die Industrie	4:
7.1	Entwicklung und Einordnung des Industriesektors	43
7.2	PEM Elektrolyse	4
7.3	Glasherstellung	46
	7.3.1 Prozessbeschreibung	46
	7.3.2 Life Cycle Assessment	49
	7.3.3 Techno-ökonomische Analyse	50
7.4	Akzeptanzuntersuchungen	5:
7.5	Potenzialanalyse	5:
	7.5.1 Berechnungsgrundlagen zur Potenzialanalyse von grünem Wasserstoff	53
	7.5.2 Annahmen zur Nachfrage von grünem Wasserstoff	53
	7.5.3 Detaillierte Ergebnisse zur Potenzialanalyse von grünem Wasserstoff	52
8. ANHANG	S ZU KAPITEL 8	
Transpor	rtalternativen für Wasserstoff	53
8.1	Prozessbeschreibung	5:
8.2	Life Cycle Assessment	53
9. ANHANG	5 ZU KAPITEL 9	
Vergleich	h der Einsatzmöglichkeiten für Wasserstoff	54
10. ANHAN	IG ZU KAPITEL 10	
Vergleid	ch der Einsatzmöglichkeiten für Synthesegas	54
11 LITERAT	THRVERZEICHNIS	51

1. ANHANG ZU KAPITEL 1

2. ANHANG ZU KAPITEL 2

3. ANHANG ZU KAPITEL 3

Methodische Hintergründe

3.1 Energiemodell

3.1.1 Allgemeine Angaben

Tabelle 3.1: Allgemeine Modellierungsgrößen.

Benzin	Wert	Szenario	Einheit	Quelle
THG-Budget 2020 – 2050 Deutschland	14	Basis, Import, Verkehrswende	Gt CO₂-Äq.	Eigene Berechnung
	7,5	1,5 Grad	Gt CO₂-Äq.	Eigene Berechnung
THG Budgets 2020 – 2050 EU-ETS	30	Basis, Import, Verkehrswende	Gt CO₂-Äq.	[1]
	19	1,5 Grad	Gt CO₂-Äq	Eigene Berechnung
THG-Reduktion 2030 im Vergleich zu 1990	mind. 55	Alle	%	[2]
THG-Reduktion 2040 im Vergleich zu 1990	mind. 70	Alle	%	[2]
THG-Reduktion 2050 im Vergleich zu 1990	mind. 95	Alle	%	[2]
Wirtschaftswachstum	0,7	Alle	% pro Jahr	[3]

Tabelle 3.2: Bevölkerungsentwicklung nach [4].

	2019	2020	2030	2040	2050
Bevölkerung in Mio.	83,2	83,4	83,1	80,7	77,6

Tabelle 3.3: Restriktionen und Potenzial erneuerbarer Energien.

Ausstiegspläne Deutschland	Atomausstieg bis 2022, Kohleausstieg bis spätestens 2038 (auch früher möglich – wird modellintern entschieden)
Ausstiegspläne Europa	Folgen den aktuellen Energiepolitiken der Länder.

3.1.2 Annahmen zur Kostenentwicklung

 $Tabelle~3.4:~Kostenparameter~f\"{u}r~Stromerzeugungstechnologien~und~PtX-Technologien~(Investkosten~k_{I},~Betriebskosten~k_{fix},~Brennstoffkosten~k_{BS}).$

	k₁ in €	k_l in \in /kW k_{fix} in \in		E/kW k _{BS} in €/kW			
	2020	2050	2020	2050	2020	2050	Quellen
Steinkohle	1.660	1.660	50	50	5,7	4,3	[5]
Braunkohle	1.660	1.660	50	50	1,8	1,8	[5], [6]
Erdgas	623	623	19	19	14,1	19,2	[5]
Wasserkraft	2.718	2.718	56	56			[5]
Wind Onshore	1.113	938	13	12			[7]
Wind Offshore	2.590	1.285	93	46			[7]
PV	1.228	425	18	17			[5]
Biomasse	1.992	1.758	71	66	30	30	[5], [6]
Biogas	2.366	2.072	46	42	30	30	[5], [6]
PEM-Elektrolyse	1.150	400	28,8	10			[8], [9]
Methanisierung	600	250	18	8			[10]
Power-to-Liquid	840	340	34	14			[11], [12]

Tabelle 3.5: CO₂-Preis nach [13] für alle Emittenten der Erzeugungs- und Verbrauchssektoren.

	2020	2030	2040	2050
CO ₂ -Preis in €/t	37	141	246	350

3.1.3 Annahmen zum Industriesektor

- Die maximal zur Verfügung stehende Stahlschrottmenge beträgt 27 Mio. t [14].
- Der Klinkeranteil im Zement erhöht sich auf 90 % (aufgrund des Wegfallens der Hochofenroute bei der Stahlproduktion) und der Anteil neuartiger Bindemittel an der Zementproduktion beträgt maximal 50 % [3], [15].
- Die Altpapierquote wird auf 83 % erhöht und das Potenzial zur Nutzung von Sekundärbrennstoffen in der Papierindustrie kann auf maximal 15,1 TWh gesteigert werden [14].
- Der Scherbenanteil bei der Glasherstellung kann durch ein verbessertes Recyclingsystem auf die Maximalwerte gesteigert werden. Der maximale Anteil elektrischer Schmelzwannen wird auf 30 % der Gesamtmenge beschränkt und angenommen, dass die Technologie erst ab dem Jahr 2030 zur Verfügung steht [16].
- Die Obergrenze der Recyclingquote f
 ür NE-Metalle betr
 ägt 90 % [3].
- Der Anteil von biogenen Energieträgern an der Brennstoffversorgung bei der Kalkproduktion ist auf 30 % limitiert [17].
- Das Amalgamverfahren bei der Herstellung von Chlor wird 2027 eingestellt [7].
- Die Obergrenze zur Herstellung von Methanol aus Biomasse liegt bei 120 kt pro Jahr [18].
- Der maximale Anteil des Methanol-to-Olefin-Verfahrens liegt bei 75 % [7].
- Der Einsatz nachwachsender Rohstoffe für stoffliche Zwecke in der Chemieindustrie wird auf 3,6 Mio. t begrenzt [14].
- Die Ausbringung in Gießereien kann auf 90 % gesteigert werden und der Anteil elektrischer Schmelzaggregate liegt unter 85 % [14].
- Im Sektor Nahrungsmittelherstellung beträgt der maximale Elektrifizierungsanteil bei der Wärmeherstellung 95 % [3].
- Ab 2030 können Temperaturen über 500 °C mittels Power-to-Heat generiert werden [19].

3.1.4 Weitere Annahmen

- Energetische Sanierung aller Gebäude jenseits des unsanierbaren Sockels auf Passivhausstandard. Jährlich abnehmende Neubaurate von aktuell 0,85 % auf 0,2 % im Jahr 2050 und eine jährliche Abgangrate von 0,3 % (beide Angaben auf die Wohnfläche bezogen). Die Annahmen beruhen auf dem Szenario "Zielbild -70 %" aus [20].
- Die Verkehrsnachfrage im Güterverkehr verhält sich proportional zum Wirtschaftswachstum.
- Verhaltensänderungen im Bereich Ernährung werden vorerst nicht betrachtet (ein Szenario hierzu ist im Aufbau),
 sodass die Emissionen aus der Landwirtschaft nur leicht aufgrund des Bevölkerungsrückgangs sinken.
- Für die Quellgruppen Abfall- und Abwasser sowie Produktverwendung werden die THG-Emissionen exogen vorgegeben. Es wird angenommen, dass in diesen Sektoren eine Senkung der Emissionen durch technische Maßnahmen erfolgt.
- Im Jahr 2050 verbleiben in den Quellgruppen Landwirtschaft, Abfall- und Abwasser und Produktverwendung 52 Mt CO₂-Äq. Für die zulässigen Emissionen aus Industrieprozessen (die sich aus der Modellierung ergeben) verbleiben demnach noch 10,2 Mt CO₂-Äq. um eine 95- %ige Treibhausgasminderung gegenüber 1990 im Jahr 2050 zu erreichen.

3.2 Life Cycle Assessment

3.2.1 Wertschöpfungsketten-übergreifende Annahmen

Datengrundlage des Hintergrundsystems	ecoinvent Datenbank Version 3.6 – System Model: Cut-Off by Classification				
Wirkungsabschätzungsmethode.	ReCiPe 2016 Midpoint (H).				
Systemgrenzen für					
Chemische Produkte	Cradle-to-Gate				
 Kraftstoffe / Energieträger 	Well-to-Wheel / Cradle-to-Grave				
 Transporttechnologien 	Gate-to-Gate				
Geografischer Bezugsraum	Deutschland (bei unzureichender geografischer Datenverfügbarkeit zunächst Europa, dann weltweit)				
Betriebsweise	Kontinuierlich (90 % Anlagenverfügbarkeit)				
Anlagen Lebensdauer	20 a (falls keine genaueren Herstellerangaben)				
Anlagengröße	Die modellierten PtX-Anlagengrößen beziehen sich auf ihr langfristiges Potenzial im Jahr 2050				
CO ₂ -Quelle	Einheitlich Direct Air Capture für alle P2X-Wertschöpfungsketten				
	Geschlossener Kohlenstoffkreislauf bei Kraftstoffanwendung				
	Unabhängige Quelle				

3.2.2 Ausgewertete Umweltkategorien

Begriff in der Roadmap	Bezeichnung ReCiPe 2016	Referenzeinheit
Klimawandel	Climate Change	kg CO₂-Äq
Partikel Emissionen	Fine Particulate Matter Formation	kg PM _{2.5} -Äq
Stratosphärischer Ozonabbau	Stratospheric Ozone Depletion	kg CFC-11-Äq
Sommersmog	Photochemical Ozone Formation, Human Health	kg NO _x -Äq
Versauerung	Terrestrial Acidification	kg SO₂-Äq
Wasserverbrauch	Freshwater Consumption	m ³
Ressourcenverbrauch	Fossil Depletion	RÖE.
Landnutzung	Land Use Occupation	jährliche Ernte-Äq.
Metallverbrauch	Metal Depletion	kg Cu-Äq

3.3 Techno-ökonomische Analyse

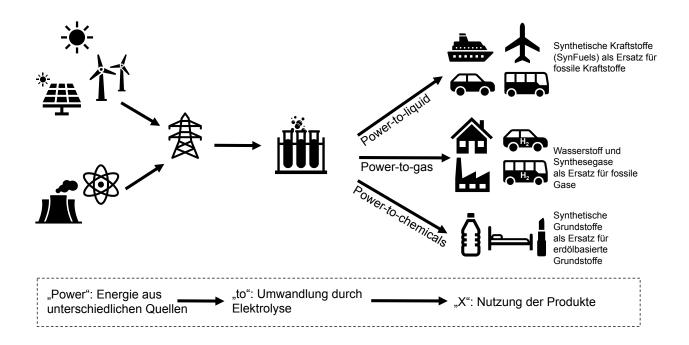
Die Tabellen in diesem Kapitel geben die Wertschöpfungsketten-übergreifenden Annahmen wieder. Spezifische Annahmen der einzelnen Wertschöpfungsketten werden in den Kapiteln 4.2–7.4 des Anhangs aufgeführt.

Tabelle 3.6: Allgemeine Parameter der TÖA.

Parameter	Wert	Einheit	Quelle
CEPCI 2019	607,5		[21]
Betriebsstunden pro Jahr	8.000	h/a	Allg. Absprache in Roadmap 3.0
Abschreibedauer Anlagen allgemein	20	a	Allg. Absprache in Roadmap 3.0
Diskontierungssatz	5	%	Allg. Absprache in Roadmap 3.0
Lohnkosten Deutschland Verarbeitendes Gewerbe 2019	40,90	€/h	[22]
Wechselkurs 1 € in US-\$ 2019	1,12		[23]

Tabelle 3.7: Betriebskosten.

Parameter	2020	2030	2050	Einheit	Quelle
Stromkosten	37,64	58,52	57,21	€/MWh	Berechnung aus Task "Energieszenario"
H ₂ Bereitstellungskosten aus PEM Elektrolyse	3,14	3,51	2,97	€/kg	Ergebnisse aus 7.2.3
CO ₂ Bereitstellungskosten aus DAC	740	150	110	€/t	Absprache mit technischem AP
Erdgas (reine Brennstoffkosten)	14,11	17,9	19,23	€/MWh	Berechnung aus Task "Energieszenario"
Erdgas inkl. CO ₂ -Preis	18,56	35,46	89,23	€/MWh	Berechnung aus Task "Energieszenario"
Wasser	2			€/m³	[24]
Kühlwasser	0,0035			€/m³	[25]
Entsorgung Prozesswasser	3,8			€/m³	[26]


Tabelle 3.8: Kostenfaktoren für indirekte und direkte Betriebskosten.

Kostenfaktoren für Betriebskosten	Basis	Thermochemisch	Thermochemisch	Elektrochemisch
		großskalig	kleinskalig	
Indirekte Betriebskosten				
Versicherung und Steuern	FCI (fixed capitel investments) (CAPEX)	0,02	0,02	0,02
Maintenance labor (ML)	FCI/CAPEX	0,01	0,005	Wartungskosten werden auf Basis
Maintenance material (MM)	FCI/CAPEX	0,01	0,005	der Elektrolyseleistung ermittelt
Operating supplies (OS)	ML+MM	0,15	0,15	0,15
Administrative costs	РО	0,25	0,25	0,25
Plant overhead costs (PO)	Lohnkosten OL+OV+OS	0,50	0,05	0,50
Direkte Betriebskosten		Basis		Faktor
Operating supervision (OV)		Lohnkosten		0,15
Laboratory charges		Lohnkosten		0,20

3.4 Akzeptanz

Power-to-X im Schaubild

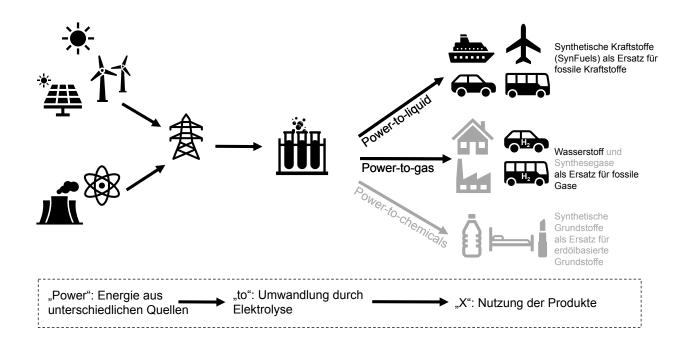
In dem folgenden Schaubild ist die Grundidee von Power-to-X kurz dargestellt.

ALLGEMEINE INFORMATIONEN ZU POWER-TO-X

Der Hintergrund:

Unser Energiesystem beruht auf stofflichen Energieträgern, die fast ausschließlich fossiler Natur sind, wie Öl, Kohle und Erdgas. Stoffliche Energieträger haben viele Vorteile: Sie können nahezu unbegrenzt gelagert werden, haben sehr hohe Energiedichten und können über die vorhandene Infrastruktur (Tankstellen, Gasnetz) verteilt werden.

Die Vision:

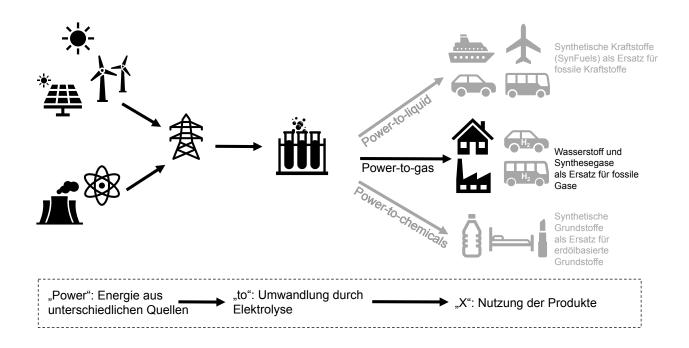

Mit Power-to-X können diese fossilen Ressourcen nachhaltig ersetzt werden. Aus erneuerbarem Strom ("Power") werden dafür stoffliche Energieträger ("X") wie Wasserstoff, Chemieprodukte oder synthetische Treibstoffe hergestellt und auf diese Weise Sektoren wie Verkehr, Industrie und Chemie dekarbonisiert.

Anwendungsbeispiele:

Beispiele sind die Chemieindustrie, wo Öl als Ausgangsstoff dient, und die Glasindustrie, die Erdgas zur Beheizung der Schmelztiegel verwendet. Aber auch Treibstoffe für Flugzeuge und Lastentransport sind Anwendungsgebiete für Power-to-X-Produkte.

Power-to-X im Verkehr

Ein möglicher Anwendungsbereich für Power-to-X-Technologien ist der Verkehrssektor. Die erzeugten synthetischen Kraftstoffe können alternativ zu herkömmlichen Kraftstoffen genutzt werden. Außerdem können Fahrzeuge auch direkt mit Wasserstoff betrieben werden. Dies wird in der Abbildung veranschaulicht.

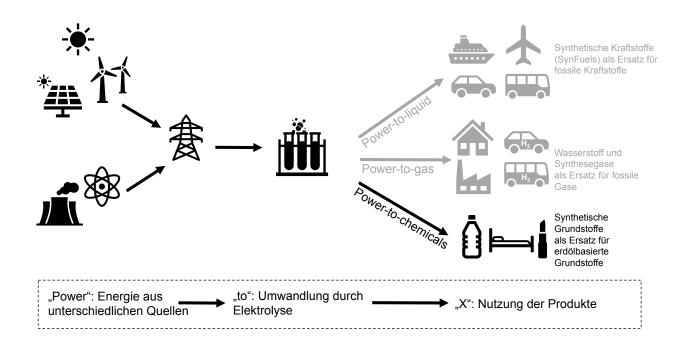

6. Nun interessiert uns, wie Du zu Power-to-X im Verkehrssektor stehst.

Inwiefern stimmst Du der folgenden Aussage zu?

	stimme überhaupt nicht zu	stimme eher nicht zu	teils/teils	stimme eher zu	stimme völlig zu	kann ich nicht beurteilen
Alles in allem unterstütze ich die Nutzung von Power-to-X-Technologien im Verkehrssektor in Deutschland.	0	0	0	0	0	0

Power-to-X im Energiesektor

Neben dem Verkehrssektor finden Power-to-X-Technologien auch im Energiesektor Verwendung. Wasserstoff kann z. B. zum Heizen von Industrieöfen (z. B. Glasindustrie) oder für die Heizung in Privathaushalten genutzt werden.


10. Nun interessiert uns, wie Du zu Power-to-X-Technologien im Energiesektor stehst.

Inwiefern stimmst Du der folgenden Aussage zu?

	stimme überhaupt nicht zu	stimme eher nicht zu	teils/teils	stimme eher zu	stimme völlig zu	kann ich nicht beurteilen
Alles in allem unterstütze ich die Nutzung von Power-to-X-Technologien im Energiesektor in Deutschland.	0	0	0	0	0	0

Power-to-X im Chemiesektor

Auch der Chemiesektor bietet unterschiedliche Anwendungsmöglichkeiten für Power-to-X-Technologien. Synthesegase können dazu genutzt werden chemische Grundstoffe herzustellen. Bisher werden diese Grundstoffe vornehmlich aus fossilen Ressourcen gewonnen.

12. Nun interessiert uns, wie Du zu Power-to-X-Technologien im Chemiesektor stehst.

Inwiefern stimmst Du der folgenden Aussage zu?

	stimme überhaupt nicht zu	stimme eher nicht zu	teils/teils	stimme eher zu	stimme völlig zu	kann ich nicht beurteilen
Alles in allem unterstütze ich die Nutzung von Power-to-X-Technologien im Chemiesektor in Deutschland.	0	\circ	\bigcirc	0	0	0

3.5 Potenzialanalyse

3.5.1 Relevante Kriterien und Cluster für eine PtX-Potenzialanalyse

Tabelle 3.9: Kriterien, die für das Potenzial von PtX-Produkten berücksichtigt werden, eingeteilt in fünf Cluster.

Grundressourcen	Infrastruktur	Industrie	Politischer Rahmen	Kriterien-übergreifende Faktoren
Erneuerbare Energien	Verfügbarkeit von Flächen	Raffinerieanlagen	Emissionsreduktionsziele	Sozio-Politische Akzeptanz
Dargebot an Süß-/Salzwasser	Stromnetz	Chemieparks	Politische Förderinstrumente	Lokale Akzeptanz
CO ₂ -Quellen	Energiespeicher	Schaffung von Arbeitsplätzen unter Berücksichtigung des Ausbildungsstands	Länderstabilität	Marktakzeptanz
	Exportkapazität	Technologieziele		Politische Abstandsregelungen
				Datenverfügbarkeit

Tabelle 3.10: Verschiedenen Potenzialebenen am Beispiel Kriterium: "Erneuerbare Energien" (eine Hierarische Betrachtung der Ebenen wird explizit ausgeschlossen).

Theoretisch	Technisch	Wirtschaftlich	Politisch	Sozial
gesamtes regionales Potenzial (Sonne/Wind/), das sich theoretisch in EE-Strom umwandeln ließe	technische Wirkungsgrade	Herstellungs- bzw. Import und Betriebskosten.	bebaute, geschützte oder weitere, nicht zugängliche Flächen (Topographie)	Lokale Akzeptanz
	technische Mindestabstände	Marktakzeptanz	Regionales Klimaschutzziel (2050) und Etappen (2030)	Bereitschaft zu Eigenverbrauch
	Betriebsdauer		Politische Abstandsregelungen	Abstandsregelungen
			Förderungsmaßnahmen (bspw. pro TWh)	Nutzungskonkurrenz

3.5.2 Zu untersuchende Länder

Tabelle 3.9: Ausgewählte Länder, für die das PtX-Potenzial erhoben werden soll.

Early Adopter

Quellen	Argentinien	Chile			
Ausbauzustand und Potenzial EE	 2,4 %-Anteil EE am Strommix weitere 29 %-Anteil am Strommix große Wasserkraftwerke >50 MW 	 34 %-Anteil EE (hauptsächlich Wasser) Sehr hohes Wind- und PV-Potenzial, noch nicht ausgeschöpft 			
Infrastruktur	 Hochspannungsleitungen sind begrenzt verfügbar Erdgaspipelines mit Chile Terminals für Erdgas und fossile Kraft- und Brennstoffe an Häfen 	 Erdgaspipelines mit Argentinien Erdgasterminals an Häfen 			
Stand der Industrie	 geprägt von Landwirtschaft (Nahrungsmittel- und Futterindustrie) Raffinerieprodukte, Kraftfahrzeuge 	BIP pro Kopf ca. 15.000 USD, Industrieanteil ca. 31 %			
Wasserverfügbarkeit / -stress	geringer Wasserstress gemäß WeltRisikoIndex (Fokus: Wasserversorgung, Rang 136, Stand 2019) [27]	 sehr hoher WeltRisikolndex bei sehr geringer Vulnerabilität, Anfälligkeit und sehr guten Bewältigungs- und Anpassungskapazitäten (Fokus: Wasserversorgung Rang 27, Stand 2019) Wasserversorgung privatisiert 			
Politische Ziele / Agenda hinsichtlich EE	• Ausbauziele für EE-Strom: 2025: 20 %, 2030: 25 %	 Ausbauziel EE 70 % bis 2030 Unabhängigkeit von Importen (Erdgas, Kohle) und Wasserkraft (wg. zunehmender Dürreperioden) H₂-Strategie erarbeitet 			
Besonderheiten	 Sehr hohes EE-Potenzial, das bisher jedoch kaum ausgebaut ist Entwicklungspolitische und industriepolitisch Perspektive für einen "emerging market" 	 Wird als "Hidden Champion" für H₂- und PtX-Produktion bezeichnet 			

Global Player	In Transition	Newcomer
China	Kasachstan	Madagaskar
 26 %-Anteil EE an Stromerzeugung extrem hohe EE-Zuwachsraten (von 2018 auf 2019 160 TWh) 	 1,27 %-Anteil EE an Stromerzeugung großes Potenzial für Solar, theoretisch 2,5 TWh / Jahr sehr großes Potenzial für Windstrom, theoretisch 920 TWh / Jahr sehr niedriger Stromeigenbedarf (2017 bei ca. 87 TWh), sodass Exportpotenzial prinzipiell gegeben ist. 	 24 % Wasserkraft, 0,1 % Wind / PV Anteile am Strommix hohe Potenziale für PV und Wind
 Infrastruktur für fossile Energieträger vorhanden Strominfrastruktur wird zunehmend ausgebaut 	 Pipelines Erdgas bis Europa Stromtrassen vorhanden 	 insgesamt schlecht entwickelt kein flächendeckendes Stromnetz, gering belastbar Häfen vorhanden
 Exportland, breit gefächert Weltmarktführer für PV-Module und Batteriezellen 	 gemessen am BIP größte Volkswirtschaft Zentralasiens geprägt durch Bergbau (Kupfer, Chromit, Kohle, Bauxit) und Förderung von Erdöl und -gas Stahl- und Aluminiumproduktion, chemische Industrie Hauptexportprodukte: Öl, Gas, Metalle 	 insg. schwach entwickelt überwiegend Textil, Bergbau begrenzt Zementwerke
mittlerer Wasserstress gemäß des WeltRisikolndex (Rang 98)	geringer Wasserstress gemäß des WeltRisikolndex (Rang 135)	 hoher des WeltRisikolndex (Rang 39) Meerwasserentsalzung ist aufgrund der Insellage eine Möglichkeit zur Deckung des Wasserbedarfs für H₂- und PtX-Erzeugung
• Ausbauziele EE-Strom: 2020: 28 %, Ziel für 2030 soll auf 40 % angehoben werden	Ausbauziele für EE-Strom: 2025: 30 %, 2030: 50 %	 durch internationale Förderprogramme können 2030 5 % PV-Anteil am Strom mix erreicht werden
 führendes Industrieland als globaler Partner für globale Zukunftsfragen großes Potenzial für H₂- und PtX- Produktion und -Nachfrage Extrem starke Zuwachsraten für die Energieproduktion, EE und fossil sowie nuklear 	Die Wirtschaft Kasachstans fußt auf fossilen Rohstoffen. Zur Erreichung der Klimaschutzziele wird die Wirtschaft auf erneuerbare Energie träger, dessen Potenzial groß ist, umgebaut werden müssen. Durch bereits vorhandene relevante Industrieanlagen und Infrastruktur (u.a. direkte Pipelines nach Europa) bieten sich Vorteile in der Umsetzung und einem möglichen Import nach Deutschland.	 Entwicklungspolitische und industriepolitisch Perspektive für ein sehr armes und strukturschwaches Land mit hohem Potential an EE. Insbesondere Insellösungen können aufgrund des "fehlenden" Stromnetz es attraktiv sein.

3.5.3 Verwendete Parameter der Potenzialanalyse

Tabelle 3.11: Stromproduktionsdaten aus dem TUM/OTH Modell.

	Strom [TWh]				
	2020	2030	2040	2050	
Eingespeiste Jahresarbeit, gesamt	570	430	910	1.188	
Windenergie an Land	140	243	439	439	
Windenergie auf See	22	22	161	267	
PV	56	72	227	431	
Wasserkraft	14	14	14	14	
Biomasse	44	21	21	21	
Geothermie	0	18	18	18	
nicht erneuerbar	294	41	31	0	

Tabelle 3.12: Vergleich der Endenergiebedarfe in Deutschland.

	Strom [TWh]				
Bruttostromverbrauch	2020	2030	2040	2050	
Prognos (BMWi) [28]		575	571	574	
Prognos, Öko-Institut, Wuppertal-Institut (Agora Energiewende) [16]		643	824	962	
Öko-Institut, Prognos (WWF) [29]		480	600	700	
P2X-Roadmap 3.0	550,94	501,27	582,56	576,68	

3.5.4 Annahmen für die zeitliche Entwicklung der CO₂-Punktquellen in der Potenzialanalyse

- Chemieindustrie: Die Emissionen der Chemieindustrie reduzieren sich um 19 % in 2030 (24 Mio. t_{CO_2}), 36 % in 2040 (19 Mio. t_{CO_2}) und 61 % in 2050 (12 Mio. t_{CO_2}) im Vergleich zu 2020 (30 Mio. t_{CO_2}) [30].
- Energiesektor: Für das Jahr 2030 werden die Emissionen der Energiewirtschaft auf 175 Mio. t CO₂ reduziert [2].
 Aufgrund des geplanten Kohleausstiegs bis 2038 wird angenommen, dass die Emissionen im Jahr 2040 um 85 % im Vergleich zu 2020 auf 45 Mio. t CO₂ reduziert werden. und bis 2050 konstant bleiben. Die Restemissionen sind auf die Nutzung von Erdgas zurückzuführen.
- Metallindustrie: Die CO_2 -Emissionen der Metallindustrie sinken auf 27,6 Mio. t CO_2 in 2030, 22 Mio. t CO_2 in 2040 und 16,5 Mio. t CO_2 in 2050 [31].
- Papierindustrie: Die Emissionen der Papierindustrie sinken auf 0 bis 2050 [14] und es wird angenommen, dass die Abnahme linear erfolgt.
- Abfall- und Abwassermanagement: Der Bundesverband Sekundärrohstoffe und Entsorgung (BVSE) prognostiziert eine CO₂-Reduzierung in der Abfallbranche um 70 % bis 2050 [32]. Es wurde eine lineare zeitliche Abnahme angenommen.
- Mineralindustrie: Die CO₂-Emissionen der Mineralindustrie (Zement, Kalk, Glas und Keramik) für das Jahr 2050 wurden nach dem 95 %-Pfad in [33] auf 3 Mio. gesetzt. Die zeitliche Abnahme wurde linear angenommen.

Tabelle 3.13: Verfügbare CO₂-Mengen (aus [34], [35]) und zeitliche Entwicklung (im Kapitel 3.5.3.2 beschreiben) aus Industrie- und biogenen Quellen.

	Menge [Mio. t]				
	2020	2030	2040	2050	
Industriequellen	428,5	273,2	121,2	96,0	
Chemieindustrie	29,8	24,1	19,1	11,6	
Energiesektor	305,1	175,0	45,8	45,8	
Metallindustrie	34,9	27,6	22,1	16,5	
Papierindustrie	7,8	5,2	2,6	0,0	
Abfall- und Abwassermanagement	21,2	19,1	17,0	14,9	
Mineralindustrie	29,6	20,7	11,9	3,0	
Biogene Quellen	4,5	2,7	3,4	4,3	
Bioethanol	0,8	0,6	0,8	0,5	
Biogas	3,7	2,1	2,6	3,8	

Tabelle 3.14: Endenergiebedarf der CO₂-Abscheidung.

[kWh/t CO₂]

	2020	2030	2040	2050
Industrielle Quellen [35]	342,17	328,26	265,26	293,54
DAC [36]	800,00	400,00	400,00	365,00
Biogene Quellen [35]	111,00	111,00	111,00	111,00

Tabelle 3.15: Einstellungen im Tool für die Potenzialanalyse der Fischer-Tropsch-Produkte Benzin, Diesel, Kerosin und Diesel sowie für Wasserstoff.

Stromquellen	Nur erneuerbar
Eigenbedarf	Wird abgezogen
Stromanteil für ausgewähltes PtX-Produkt	100 %
CO ₂ -Quellen	DAC

4. ANHANG ZU KAPITEL 4

Einbettung der Analysen in den Gesamtkontext der Energiewende und Klimaschutzziele

4.1 Übergreifende Energiesystemmodellierung

Tabelle 4.1: Verkehrsleistung und Modal Split.

	20	2020 2050 Basis 2050 Verkehrswo		2050 Basis		ehrswende
Personenverkehr	Mrd. pkm	%	Mrd. pkm	%	Mrd. pkm	%
Straße Pkw	959,0	81,5	892,5	81,5	461,0	55,1
Straße Bus	42,1	3,6	39,2	3,6	92,4	11,0
Schiene	107,4	9,1	99,9	9,1	236,0	28,2
Flugzeug	68,0	5,8	63,2	5,8	47,3	5,7
Summe Personen	1.176,5	100	1.094,8	100	836,7	100
Güterverkehr	Mrd. tkm	%	Mrd. tkm	%	Mrd. tkm	%
Straße (Lkw)	501,4	72,4	618,1	72,4	461,0	54,6
Schiene	132,6	19,2	163,5	19,2	272,0	32,2
Binnenschiff	56,7	8,2	69,9	8,2	113,0	13,1
Flugzeug	1,7	0,2	2,0	0,2	1,1	0,1
Summe Güter	692,4	100	853,5	100	845,1	100

Tabelle 4.2: Treibhausgasemissionen in Deutschland.

ГМŧ	co	₂ -Äq]
Livie	CO	2 ~ 41

Szenario	2020	2030	2040	2050
Basis und Import	769	503	298	71
Verkehrswende	770	487	273	71
1,5 Grad	745	318	167	71

${\bf Tabelle~4.3:~Strombedarf~in~Europa.}$

Szenario	2020	2030	2040	2050
Basis / Import	3.057,8	3.638,1	4.274,6	5.015,3
1,5 Grad	3.057,8	3.784,3	4.496,7	5.245,5
Verkehrswende	3.057,8	3.530,5	4.044,8	4.619,5

Tabelle 4.4: Wasserstoffbedarf in Europa.

	Strom	[TWh]
--	-------	-------

Szenario	2020	2030	2040	2050
Basis / Import	0,0	76,5	642,9	1.466,5
1,5 Grad	0,0	490,3	893,1	1.428,0
Verkehrswende	0,0	53,83	643,7	1.394,6

4.1.1 Energiesystemmodellierung – Energie- und Rohstoffnachfrage

Tabelle 4.5: Kumulierter Endenergiebedarf in den Szenarien Basis und Import.

	r 1
Strom	i i whi

	2020	2030	2040	2050
Kohle	165,2	128,3	68,5	0,0
Mineralöl	1.146,7	859,0	395,6	0,0
Erdgas	629,6	555,2	380,7	0,0
Sonstige	46,1	32,5	14,1	0,0
Fernwärme	131,0	119,7	110,4	114,3
Biomasse	201,8	229,1	234,3	238,1
Solarthermie	7,7	29,9	97,6	100,0
Strom ohne PtX	550,2	500,3	564,3	607,7
PtL-Kraftstoff	0,0	0,8	2,3	83,3
PtG-Methan	0,0	1,7	34,6	192,0
PtG-Wasserstoff	0,0	18,9	135,8	294,3

 ${\bf Tabelle~4.6:~Kumulier ter~Endenergie bedarf~im~Szenario~1,5~Grad.}$

trom	ITWhl
LI VIII	

	2020	2030	2040	2050
Kohle	159,0	23,7	9,1	0,0
Mineralöl	1.098,2	567,9	192,1	0,0
Erdgas	611,2	400,2	258,9	0,0
Sonstige	44,7 T	8,9	2,2	0,0
Fernwärme	131,7	74,7	64,1	83,7
Biomasse	211,5	253,7	215,3	149,4
Solarthermie	9,6	62,4	84,1	83,7
Strom ohne PtX	545,1	580,4	648,3	640,3
PtL-Kraftstoff	0,0	0,8	3,4	83,3
PtG-Methan	0,0	39,5	35,5	192,0
PtG-Wasserstoff	0,0	129,2	241,4	293,8

Tabelle 4.7: Kumulierter Endenergiebedarf im Szenario Verkehrswende.

	Strom [TWh]			
	2020	2030	2040	2050
Kohle	165,4	132,5	67,5	0,0
Mineralöl	1.139,1	791,8	339,0	0,0
Erdgas	629,3	539,6	318,7	0,0
Sonstige	46,1	33,9	14,3	0,0
Fernwärme	134,1	120,7	109,5	100,5
Biomasse	196,0	222,7	233,9	215,2
Solarthermie	8,1	25,8	80,0	79,9
Strom ohne PtX	549,4	504,5	558,4	579,6
PtL-Kraftstoff	0,0	0,6	1,5	62,6
PtG-Methan	0,0	1,6	34,6	192,0
PtG-Wasserstoff	0,0	12,8	136,0	274,6

4.1.2 Energiesystemmodellierung – Stromerzeugung und Speicherbedarf

Tabelle 4.8: Stromerzeugung und Import / Exportbedarf im Basisszenario in Deutschland.

	Strom [TWh]				
	2020	2030	2040	2050	
Kernenergie	64,3	0,0	0,0	0,0	
Steinkohle	42,4	0,4	0,0	0,0	
Braunkohle	91,6	0,3	0,0	0,0	
Mineralöl	4,2	0,0	0,0	0,0	
Erdgas	91,6	40,2	30,6	0,0	
Sonstige	0,2	17,5	17,5	17,5	
Biomasse	44,2	20,6	20,6	20,6	
Photovoltaik	56,1	71,7	227,2	430,8	
Wind Onshore	139,7	242,8	439,0	439,0	
Wind Offshore	22,4	22,4	161,5	266,6	
Wasserkraft	13,7	13,7	13,7	13,7	
Rückverstromung	0,0	0,0	0,0	6,4	
Import / Exportsaldo Strom (positive Werte = Import)	-95,2	118,2	-24,9	166,5	

 ${\bf Tabelle~4.9: Stromerzeugung~und~Import/Export bedarf~im~Szenario~1, 5~Grad~in~Deutschland.}$

	Strom [TWh]			
	2020	2030	2040	2050
Kernenergie	64,3	0,0	0,0	0,0
Steinkohle	42,4	0,0	0,0	0,0
Braunkohle	91,6	0,0	0,0	0,0
Mineralöl	4,2	0,0	0,0	0,0
Erdgas	91,6	4,0	0,3	0,0
Sonstige	0,2	17,5	17,5	17,5
Biomasse	44,2	20,6	20,6	20,6
Photovoltaik	56,1	198,3	332,9	430,8
Wind Onshore	139,7	351,0	439,0	439,0
Wind Offshore	22,4	99,2	196,5	266,6
Wasserkraft	13,7	13,7	13,7	13,7
Rückverstromung	0,0	7,4	1,2	8,0
Import / Exportsaldo Strom (positive Werte = Import)	-95,2	115,8	61,4	151,3

Tabelle 4.10: Stromerzeugung und Import / Exportbedarf im Szenario Import in Deutschland.

	Strom [TWh]			
	2020	2030	2040	2050
Kernenergie	64,3	0,0	0,0	0,0
Steinkohle	42,4	0,4	0,0	0,0
Braunkohle	91,6	0,3	0,0	0,0
Mineralöl	4,2	0,0	0,0	0,0
Erdgas	91,6	40,2	30,6	0,0
Sonstige	0,2	17,5	17,5	17,5
Biomasse	44,2	20,6	20,6	20,6
Photovoltaik	56,1	59,5	146,5	366,6
Wind Onshore	139,7	242,8	439,0	439,0
Wind Offshore	22,4	22,4	72,0	266,6
Wasserkraft	13,7	13,7	13,7	13,7
Rückverstromung	0,0	0,0	0,5	24,3
Import / Exportsaldo H ₂ (positive Werte = Import)	0	14,9	81,8	115,2

 ${\bf Tabelle~4.11: Stromerzeugung~und~Import/Export bedarf~im~Szenario~Verkehrswende~in~Deutschland.}$

Strom	[TWh]

	2020	2030	2040	2050
Kernenergie	64,3	0,0	0,0	0,0
Steinkohle	42,4	0,4	0,0	0,0
Braunkohle	91,6	0,2	0,0	0,0
Mineralöl	4,2	0,0	0,0	0,0
Erdgas	91,6	41,0	29,5	0,0
Sonstige	0,2	17,5	17,5	17,5
Biomasse	44,2	20,6	20,6	12,5
Photovoltaik	56,1	67,0	220,6	394,7
Wind Onshore	139,7	242,8	439,0	439,0
Wind Offshore	22,4	22,4	148,0	266,6
Wasserkraft	13,7	13,7	13,7	13,7
Rückverstromung	0,0	0,0	0,0	8,6
Import / Exportsaldo Strom (positive Werte = Import)	-95,2	116,7	-11,5	126,4

4.2 Strom als Haupteinflussfaktor für die ökologischen und ökonomischen Bewertungen

4.2.1 Umweltauswirkungen der Stromerzeugung

 ${\bf Tabelle~4.12:} \ {\bf Zuk \"{u}nftige~Technologiever} teilung~der~Stromerzeugung~, Basisszenario".$

	2020	2030	2050
Biomasse	7,32 %	3,39 %	1,42 %
Steinkohle	9,45 %	4,74 %	0,00 %
Erdgas	15,06 %	5,96 %	0,00 %
Wasserstoffmotor	0,00 %	0,00 %	0,94 %
Geothermie	0,03 %	2,79 %	1,12 %
Wasserkraft	3,33 %	4,24 %	1,64 %
Braunkohle	18,87 %	0,05 %	0,00 %
Photovoltaik	7,68 %	15,34 %	28,68 %
Wind Offshore	4,27 %	6,42 %	18,16 %
Wind Onshore	17,55 %	38,58 %	29,91 %
Kernenergie	12,43 %	0,00 %	0,00 %
Importe	4,01 %	18,49 %	18,12 %
	100,00 %	100,00 %	100,00 %

Tabelle 4.13: Umweltauswirkungen je 1 kWh Strom entsprechend der zukünftigen Technologieverteilung der Stromerzeugung "Basisszenario".

	2020	2030	2050	Einheit
Climate change	0,485	0,134	0,052	kg CO ₂ -Äq.
Fine Particulate Matter Formation	2,73E-04	1,53E-04	1,35E-04	kg PM2.5-Äq
Fossil depletion	1,24E-01	3,57E-02	1,21E-02	RÖE.
Freshwater Consumption	2,46E-03	1,75E-03	1,43E-03	m ³
Land use	1,20E-02	8,46E-03	6,99E-03	jährliche Ernte-Äq
Metal depletion	7,24E-04	9,25E-04	1,20E-03	kg Cu-Äq
Photochemical Ozone Formation, HH	5,04E-04	2,21E-04	1,40E-04	kg NOx -Äq
Stratospheric Ozone Depletion	3,52E-07	1,63E-07	7,70E-08	kg CFC-11-Äq
Terrestrial Acidification	8,99E-04	4,54E-04	3,30E-04	kg SO2-Äq

5. ANHANG ZU KAPITEL 5

Verkehr

5.1 Entwicklung und Einordnung des Verkehrssektors

Tabelle 5.1: Endenergiebedarf im Verkehrssektor in den Szenarien Basis und Import.

	Strom [TWh]				
	2020	2030	2040	2050	
Mineralöl	727,7	562,5	277,8	0	
Erdgas	6,1	5,6	4,8	0	
Biomasse	28,6	6,5	0,1	0	
Strom ohne PtX	13,6	50,9	126,4	151,2	
PtL-Kraftstoff	0	0,8	2,3	83,3	
PtG-Wasserstoff	0	8,7	12,8	87,2	

Tabelle 5.2: Endenergiebedarf im Verkehrssektor im Szenario 1,5 Grad.

	Strom [TWh]			
	2020	2030	2040	2050
Mineralöl	720,8	365,6	95,6	0
Erdgas	6,1	5,6	4,1	0
Biomasse	29,1	25,2	7,4	0
Strom ohne PtX	15,2	70,3	152,4	151,2
PtL-Kraftstoff	0	0,8	3,4	83,3
PtG-Wasserstoff	0	89,5	86,1	87,3

 ${\bf Tabelle~5.3:~Endenergie bedarf~im~Verkehrs sektor~im~Szenario~Verkehrs wende.}$

	Strom [TWh]				
	2020	2030	2040	2050	
Mineralöl	720,1	495,3	218,0	0	
Erdgas	6,1	5,6	5,0	0	
Biomasse	24,4	0	0	0	
Strom ohne PtX	13,9	52,8	106,7	112,8	
PtL-Kraftstoff	0	0,6	1,5	62,6	
PtG-Wasserstoff	0	8,7	16,1	67,6	

5.2 Prozessbeschreibung FT-Kraftstoffe

Betrachtet wurde eine Großanlage mit 100 MW Elektrolyseleistung, die kontinuierlich im Betrieb ist. Die Systemgrenzen schließen die Prozesskette zur Herstellung der FT-Kraftstoffe und beim LCA auch die anschließende Verbrennung im Flugzeug ein. Die Flugzeugherstellung, die Flughafeninfrastruktur sowie die Wartung wurden nicht miteinbezogen, da sie für das synthetische Kerosin und das fossile Äquivalent identisch sind. Die folgenden Schritte wurden demnach betrachtet:

- CO₂- Bereitstellung: Direct Air Capture (DAC) von Climeworks
- Synthesegasbereitstellung: HT-Co-Elektrolyse von Sunfire und Standardkompression
- Fischer-Tropsch Synthese von Ineratec
- Aufarbeitung und Auftrennung: Hydrierende Spaltung, Isomerisierung und Auftrennung von KIT-IMVT
- LCA: Verbrennung des Kerosins im Flugzeug (Datengrundlage: ecoinvent 3.6)

Die in den folgenden Tabellen aufgeführten Energie- und Stoffstromdaten stammen aus einer vom KIT-IMVT durchgeführten Prozesssimulation der Prozesskette auf Basis der von den technischen Partnern zur Verfügung gestellten Daten. Der CO₂-Input wurde hier als gegeben angenommen. Der DAC-Schritt sowie der Isomerisierungsschritt wurden aufgrund der Datenlage noch nicht in der Prozesssimulation implementiert, wenngleich der Energiebedarf für die Bilanz mitberücksichtigt wurde. Die Daten zum Anlagenbau wurden von den Partnern aus den technischen Arbeitspaketen zur Verfügung gestellt.

Als Strominput wird analog zu den anderen Wertschöpfungsketten deutscher Netzstrom angenommen, als Wärmeinput für den nicht durch Wärmeintegration abgedeckten Restwärmebedarf (siehe Tabelle 5.5) Wärme aus regenerativen Quellen, hier Geothermie.

Tabelle 5.4: Allgemeine Prozessparameter der Prozesskette zur Herstellung von FT-Kerosin.

Parameter	Wert	Einheit	Quelle
Kraftstoff pro Stunde	5.683	kg/h	Techn. AP
CO ₂ -Gewinnung DAC pro Stunde	17.316	kg/h	Techn. AP
Synthesegasbereitstellung pro Stunde	24.654	kg/h	Techn. AP

Tabelle 5.5: Inputs der Prozesskette zur Herstellung von FT-Kerosin.

Parameter	2020	2030	2050	Einheit	Quelle
DAC					
Strombedarf	7,7	6,9	6,9	MW	Techn. AP
Wärmebedarf extern bei HT-Wärmerückgewinnung	11,3	8,3	8,3	MW	Techn. AP
Wärmebedarf extern bei HT- und NT-Wärmerückgewinnung	0,9	0	0	MW	Techn. AP
Sorbentbedarf pro Stunde	10	10	5	kg/h	Techn. AP
Synthesegasbereitstellung				-	
Strombedarf Elektrolyse	112	107	105	MW	Techn. AP
Strombedarf Kompression	8	8	8	MW	Techn. AP
Wasserbedarf pro Stunde	18.937	18.937	18.937	kg/h	Techn. AP
Abwasser pro Stunde	2.771	2.771	2.771	kg/h	Techn. AP
FT-Synthese					
Strombedarf	0,2	0,2	0,2	MW	Techn. AP
Katalysatorbedarf pro Jahr	31.000	31.000	31.000	kg/a	Techn. AP
Aufbereitung				-	
Strombedarf	0,04	0,04	0,04	MW	Techn. AP
Katalysatorbedarf pro Jahr	274	274	274	kg/a	Techn. AP
Abwasser pro Stunde	8.237	8.237	8.237	kg/h	Techn. AP

5.3 Life Cycle Assessment

Verwendete ecoinvent-Datensätze (ecoinvent 3.6):

DIRECT AIR CAPTURE

- aluminium, cast alloy; market for aluminium, cast alloy [GLO]
- polyethylene, high density, granulate; market for poly ethylene, high density, granulate [GLO]
- stone wool, packed; market for stone wool, packed [GLO]
- steel, unalloyed; market for steel, unalloyed [GLO]
- metal working, average for steel product manufacturing; market for metal working, average for steel product manufacturing [GLO]
- steel, chromium steel 18/8; market for steel, chromium steel 18/8 [GLO]

- metal working, average for chromium steel product manufacturing; market for metal working, average for chromium steel product manufacturing [GLO]
- toner, colour, powder; market for toner, colour, powder [GLO]
- copper; market for copper [GLO]
- extrusion, plastic film; market for extrusion, plastic film [GLO]
- anionic resin; market for anionic resin [GLO]
- concrete, sole plate and foundation; market for concrete, sole plate and foundation [RoW]

SYNTHESEGASBEREITSTELLUNG

Stack

- glas solder; glas solder production
- steel, chromium steel 18 / 8; market for steel, chromium steel 18 / 8 [GLO]
- metal working, average for chromium steel product manufacturing; market for metal working, average for chromium steel product manufacturing [GLO]
- nickel, 99.5 %; market for nickel, 99.5 % [GLO]
- compressed air, 700 kPa gauge; market for compressed air, 700 kPa gauge [RER]
- acrylic binder, without water, in 34 % solution state; market for acrylic binder, without water, in 34 % solution state [RER]
- cerium concentrate, 60 % cerium oxide; market for cerium concentrate, 60 % cerium oxide [GLO]
- cyclohexane; market for cyclohexane [GLO]
- samarium europium gadolinium concentrate,
 94 % rare earth oxide; market for samarium europium gadolinium concentrate,
 94 % rare earth oxide [GLO]
- cobalt; market for cobalt [GLO]
- ferrite; market for ferrite [GLO]
- lanthanum oxide; market for lanthanum oxide [GLO]
- manganese(III) oxide; market for manganese(III) oxide [GLO]
- strontium carbonate; market for strontium carbonate [GLO]
- zirconium oxide; market for zirconium oxide [GLO]

Peripherie

- copper; market for copper [GLO]
- steel, chromium steel 18/8; market for steel, chromium steel 18/8 [GLO]
- metal working, average for chromium steel product manufacturing; market for metal working, average for chromium steel product manufacturing [GLO]
- refractory, basic, packed; market for refractory, basic, packed [GLO]

FT-SYNTHESE

- aluminium oxide, non-metallurgical; market for aluminium oxide, non-metallurgical [EU27 & EFTA]
- cobalt; market for cobalt [GLO]
- steel, unalloyed; market for steel, unalloyed [GLO]
- metal working, average for steel product manufacturing; market for metal working, average for steel product manufacturing [GLO]
- steel, chromium steel 18 / 8; market for steel, chromium steel 18 / 8 [GLO]
- metal working, average for chromium steel product manufacturing; market for metal working, average for chromium steel product manufacturing [GLO]

AUFBEREITUNG UND ABTRENNUNG

- steel, chromium steel 18 / 8; market for steel, chromium steel 18 / 8 [GLO]
- metal working, average for chromium steel product manufacturing; market for metal working, average for chromium steel product manufacturing [GLO]
- platinum; market for platinum [GLO]
- zeolite, powder; market for zeolite, powder [GLO]

5.4 Techno-ökonomische Analyse

Die Daten für die Investitionskosten und deren Entwicklung wurden für die DAC, die Synthesegasbereitstellung und die Aufbereitung und Abtrennung von den jeweiligen Firmen / Entwicklern bereitgestellt. Hier ist lediglich eine Plausibilitätsprüfung, nicht jedoch eine objektive inhaltliche Prüfung möglich gewesen.

Tabelle 5.6: Total Capital Investment.

Parameter	2020	2030	2050	Einheit	Quelle
Total Capital Investment					
DAC	505	92	51	M€	Techn. AP
Synthesegasbereitstellung	573,3	85,7	49,1	M€	Techn. AP
FT-Synthese	90	72	59	M€	Prognos (2020)*
Aufbereitung	4	4	4	M€	Techn. AP

Kosten und Mengenangaben, die nicht bereits in übergeordneten Kapiteln angegeben sind, sind in Tabelle 5.7 aufgeführt.

Tabelle 5.7: Sonstige Betriebsmittel.

Parameter	Wert	Einheit	Quelle
DAC Sorbent Preis	20	€/kg	Techn. AP
Wärmepreis	30	€/MWh	Analog P2X 1
Wasserstoffbedarf für Aufbereitung	1.339	t/a	Techn. AP
Wasserstoffpreis für Aufbereitung	8	€/kg	Techn. AP

Die Personalkosten wurden aus Stundenlohn (siehe Tabelle 3.7) und Arbeitsstunden berechnet. In Absprache mit dem technischen Ansprechpartner wurde die Annahme getroffen, dass immer zwei Personen für die gesamte Anlage vor Ort sind. Damit ergeben sich 16.000 Stunden pro Jahr. Lohnkosten für Wartung und Instandhaltung wurden mit einem Zuschlagsfaktor separat berechnet.

^{*} https://www.bmwi.de/Redaktion/DE/Downloads/Studien/transformationspfade-fuer-strombasierte-energietraeger.pdf? blob=publicationFile

5.5 Potenzialanalyse synthetischer Kraftstoffe im Verkehrssektor

5.5.1 Berechnungsgrundlagen zur Potenzialanalyse von FT-Kraftstoffen

Für die Potenzialanalyse von FT-Kraftstoffen werden der Wasserstoff und das Kohlenstoffdioxid in der umgekehrten Wassergas-Konvertierungsreaktion (engl.: reverse water-gas shift reaction rWGS) zum Kohlenstoffmonoxid (und Wasser als Nebenprodukt) umgesetzt [55]. Die Reaktionsgleichung für dieses Gleichgewicht ist in Gl. 5.1 gezeigt. Im Tool der Potenzialanalyse wurde eine vollständige Umsetzung von 100 % angenommen, wobei die Massenbilanz ausgehend von den Edukten bestimmt wurde.

	1 CO ₂	+ 1 H ₂ →	1 CO +	1 H ₂ O	GI.5.1
g/mol	44,01	2,02	28,01	18,02	
	n CO	+ 2n H ₂ →	1 [CH ₂] _n +	n H ₂ O	GI.5.2
g/mol	28,01	2,02	14,03	18,02	

Als zweite Stufe wurde für die Fischer-Tropsch-Synthese (FTS) eine vereinfachte Reaktionsgleichung angenommen, welche in Gl. 5.1 gezeigt ist und v. a. die stöchiometrischen Verhältnisse für den Aufbau von CH_2 -Ketten wiedergeben. Eine technisch detaillierte Betrachtung von Katalysator-und Reaktortypen oder Reaktionsbedingungen bzgl. des Drucks und der Temperatur erfolgte nicht. Auch hier wurde ein Reaktionsumsatz von 100 % angenommen, wobei sich das eigentliche FT-Produkt aus Fraktionen unterschiedlicher Kettenlänge zusammensetzt, die durch eine Anderson-Schulz-Flory Verteilung beschrieben werden können [37], [38]. Gl. 5.3 zeigt die Verteilung, wobei w_n den Gewichtsanteil der Kohlenwasserstoffmoleküle mit n Kohlenstoffatomen und α die Wahrscheinlichkeit des Kettenwachstums beschreibt. Abhängig vom FT-Kraftstoff wird das eigentliche FT-Produkt aus Fraktionen unterschiedlicher Kettenlänge zusammensetzt, die durch eine Anderson-Schulz-Flory Verteilung beschrieben werden können Gl. 5.4 zeigt die Verteilung, wobei w_n den Gewichtsanteil der Kohlenwasserstoffmoleküle mit n Kohlenstoffatomen und α die Wahrscheinlichkeit des Kettenwachstums beschreibt.

$$\mathbf{w}_{n} = (\mathbf{1} \cdot \alpha)^{2} \cdot \alpha^{n-1} \cdot \mathbf{n}$$
 GI.5.3

$$w_n = \alpha^2 n (1 - \alpha)^{n-1}$$
 GI.5.4

5.5.2 Annahmen zur Nachfrage von FT-Kraftstoffen

Der Verbrauch von Benzin-, Diesel- und Kerosinkraftstoff betrug im Jahr 2018 in Deutschland 17,8 Mio. t, 37,5 Mio. t bzw. 10,2 Mio. t [39]. Eine einheitliche Prognose über die Entwicklung der Nutzung von flüssigen Kraftstoffen liegt aktuell nicht vor, da dazu noch sehr unterschiedliche Positionen bestehen und die Verschiebung auf Batterie- und Wasserstoffgetriebene Autos nicht vorhersehbar ist. Aus diesem Grund wurden im Tool gewisse Annahmen zur zeitlichen Entwicklung des Kraftstoffbedarfs getroffen (s. Tabelle 5.8), die als eine erste Annährung dienen sollen, jedoch nur eines von vielen möglichen Szenarien darstellt.

Tabelle 5.8: Annahmen über die Reduktion der verschiedenen Kraftstoffarten bis 2050.

% Veränderung 2050 gegenüber 2020

Ottokraftstoff		-90 %
Dieselkraftstoff		-32 %
Straßenverkehr	-70 %	
 Schienenverkehr 	-100 %	
Küsten- und Binnenschifffahrt	-10 %	
• Gewerbe, Handel, Dienstleistungen u. übrige Verbraucher	-50 %	
Kerosinkraftstoff	+:	102 % ¹

¹ Einer Studie des BMVI zufolge wird sich der Treibstoffverbrauch in der Luftfahrt von 2010 bis 2050 verdreifachen [40]

Für die Ottokraftstoffe wurde angenommen, dass bis zum Jahr 2050 eine Reduktion von 90 % im Vergleich zu 2020 stattfinden wird, da hier die elektrischen Antriebe eine bedeutsame Rolle spielen werden. Die Anwendungen von Dieselkraftstoffen sind hingegen komplexer und wurden aus diesem Grund in Sektoren aufgeteilt. Es ist zu erwarten, dass der Verbrauch von Dieselkraftstoff im Straßen- und im Schienenverkehr stark abnehmen wird (70 % bzw. 100 %), da hier eine Elektrifizierung ebenfalls möglich ist. Im Straßenverkehr werden Lastkraftwagen teilweise weiterhin mit flüssigen Kraftstoffen fahren. Die Reduktion in Küsten- und Binnenschifffahrt und in Gewerbe, Handel und Dienstleistungen wurde niedriger angenommen. Für die Nachfrage von Kerosin in Deutschland ist eine Prognose noch etwas komplexer, da nach dem EU-ETS die Emissionen von transnationalen Flügen nicht meldepflichtig sind. Im Tool wurden die Absatzmengen aus dem aktuellen Jahresbericht des Mineralölwirtschaftsverbands (MWV) verwendet [39], die als erste Näherung für den nationalen Kerosinbedarfs ausreichend genau sind, aber weitaus höher sein könnten. Die Prognose im Tool bis 2050 basieren auf einer Studie des DLR im Auftrag des BMVI, welche für die deutsche Luftverkehrsentwicklungen knapp eine Verdreifachung des Verbrauchs von 2010 bis 2050 erwartet [40]. Unter Berücksichtigung des tatsächlichen Absatzes für 2018 und der Annahme eines einfachen linearen Anstiegs sind die letztlich im Tool implementierten Mengenangaben lediglich als Größeneinordnung des Kerosinbedarfs in Deutschland anzusehen.

5.5.3 Detaillierte Ergebnisse zur Potenzialanalyse von FT-Kraftstoffen

 ${\bf Tabelle~5.9:~Potenzial analyse-Angebots potenziale~an~Benzin,~Diesel~und~Kerosin.}$

FT-Kraftstoffe	2020	2030	2040	2050	Einheit
Angebotsmengen	0,00	0,00	12,36	22,0	Mio. t
Benzin	0,00	0,00	4,96	10,58	
Diesel	0,00	0,00	4,87	10,40	
Wasserbedarf (Anteil an eneuerbaren Wasserressourcen)	0	0	105,88 (0,089 %)	225,87 (0,190 %)	Mio.t
Kerosin	0,00	0,00	6,26	13,36	
Wasserbedarf (Anteil an eneuerbaren Wasserressourcen)	0	0	105,88 (0,089 %)	225,87 (0,190 %)	Mio.t

Tabelle 5.10: Potenzialanalyse – Nachfrage an Benzin und Diesel und die dafür notwendigen Strommengen.

Benzin & Diesel	2020	2030	2040	2050	Einheit
Nachfragemengen	55,30	41,40	27,50	13,60	Mio. t
Benzin	17,80	12,46	7,12	1,78	
Diesel	37,50	28,94	20,38	11,82	
Strom (Gesamt)	2.630	1.813	1.240	695	TWh
Wind (on)	1.330	1.132	619	257	
Wind (off)	213	104	228	156	
PV	534	334	320	252	
Wasserkraft	130	64	19	8	
Biomasse	420	96	29	12	
Geothermie	2	82	25	10	
nicht erneuerbar	0	0	0	0	

Tabelle 5.11: Potenzial analyse-Nach frage an Kerosin und die dafür notwendigen Strommengen.

Kerosin	2020	2030	2040	2050	Einheit
Nachfragemengen	10,20	13,67	17,15	20,62	Mio. t
Strom (Gesamt) [TWh]	557	667	812	943	TWh
Wind (on)	282	416	406	348	
Wind (off)	45	38	149	212	
PV	113	123	210	342	
Wasserkraft	28	23	13	11	
Biomasse	89	35	19	16	
Geothermie	0	30	16	14	
nicht erneuerbar	0	0	0	0	

6. ANHANG ZU KAPITEL 6

Chemische Grundstoffe

6.1 Entwicklung und Einordnung chemischer Grundstoffe

Tabelle 6.1: Endenergiebedarf für chemische Grundstoffe in den Szenarien Basis und Import.

	Strom [TWh]				
	2020	2030	2040	2050	
Kohle	6,2	5,8	5,4	0	
Mineralöl	233,6	233,5	115,6	0	
Erdgas	90,3	89,2	69,0	0	
Biomasse	30,7	31,3	31,3	31,4	
Strom ohne PtX	11,4	13,0	45,2	69,3	
PtG-Methan	0	0,8	31,9	161,8	
PtG-Wasserstoff	0	6,8	104,9	162,4	

Tabelle 6.2: Endenergiebedarf für chemische Grundstoffe im Szenario 1,5 Grad.

rabelle 0.2. Endellergiebedarr für Chemische Gru	Strom [TWh]					
	2020	2030	2040	2050		
Kohle	6,2	5,8	5,4	0		
Mineralöl	233,4	200,1	90,2	0		
Erdgas	90,3	90,2	84,5	0		
Biomasse	30,9	31,4	31,4	31,4		
Strom ohne PtX	11,4	12,6	49,0	70,4		
PtG-Methan	0	35,2	31,4	161,7		
PtG-Wasserstoff	0	4,4	113,0	161,9		

 $\textbf{Tabelle 6.3: Endenergiebedarf f\"{u}r\ chemische\ Grundstoffe\ im\ Szenario\ Verkehrswende}.$

	Strom [TWh]				
	2020	2030	2040	2050	
Kohle	6,2	5,8	5,4	0	
Mineralöl	233,6	233,5	115,6	0	
Erdgas	90,3	89,2	69,0	0	
Biomasse	30,7	31,3	31,3	31,4	
Strom ohne PtX	11,4	13,0	45,2	69,3	
PtG-Methan	0	0,8	31,9	161,8	
PtG-Wasserstoff	0	6,8	104,9	162,4	

6.2 Biologische Umwandlung zu Butanol

 $Tabelle\ 6.4: Prozessparameter\ der\ CO_2\text{-}zu\text{-}CO\text{-}Elektrolyse.$

CO2-zu-	CO-E	lektro	vse

Szenario	Basic	Intermediate	Advanced				
	2020	2030	2050				
Parameter				Einheit			
		Zelle					
Spannung	4	2,9	2,5	V			
Stromdichte	300	600	1000	mA/cm²			
Oberfläche	3.000	5.000	20.000	cm²			
FE-CO	80	90	95	%			
Massenstrom CO ₂ Input	2,331	6,080	31,770	kg/h			
Volumenstrom CO ₂ Input	1.177	3.071	16.045	I/h			
Elektrolysezellen	2.783	1.163	202	Stück			
		Inj	put				
Strombedarf	9,30	6,07	4,94	kWh/kg CO			
CO ₂ (Bedarf)	5,971	3,811	3,111	kg/kg CO			
Wasserverbrauch	0,129	0,048	0,013	kg/kg CO			
	Produktgaszusammensetzung						
CO ₂	70	57	49	%			
СО	25	40	50	%			
H ₂	5	3	1	%			
		Output					
СО	1,000	1,000	1,000	kg/kg CO			
CO ₂	4,400	2,239	1,540	kg/kg CO			
02	0,686	0,614	0,583	kg/kg CO			
H ₂	0,014	0,005	0,001	kg/kg CO			

Tabelle 6.5: Techno-ökonomische Parameter der CO₂-zu-CO-Elektrolyse.

Szenario	Basic	Intermediate	Advanced	
	2020	2030	2050	
Parameter				Einheit
Abschreibedauer Elektrolysestack	10	10	10	
CAPEX	2.955	2.485	2.485	€/kW
O&M (in % von CAPEX)	3	3	3	%

Tabelle 6.6: Prozessparameter der Butanol-Fermentation.

Butanol-Fermentation

Szenario	Basic	Intermediate	Advanced	
	2020	2030	2050	
Parameter				Einheit
		In	put	
Strombedarf	0,58	0,58	0,58	kWh / kg Butanol
Verhältnis CO / CO ₂	2,8	2,8	2,8	
CO ₂ (Bedarf)	1,842	1,842	1,842	kg/kg Butanol
Aus CO ₂ -Elektrolyse	1,842	0,938	0,645	kg/kg Butanol
Aus DAC	0,000	0,905	1,197	kg/kg Butanol
H ₂ (Bedarf)	0,314	0,314	0,314	kg/kg Butanol
Aus CO ₂ -Elektrolyse	0,006	0,002	0,001	kg / kg Butanol
Aus PEM	0,308	0,312	0,313	kg/kg Butanol
CO ₂ (Bedarf)	4.605	4.605	4.605	kg/h
CO (Bedarf)	1.047	1.047	1.047	kg/h
H ₂ (Bedarf)	785	785	785	kg/h
		Out	tput	
Butanol	1,000	1,000	1,000	kg/kg Butanol
Abwasser	1,522	1,522	1,522	kg/kg Butanol
Biomasse-Abfall	0,053	0,053	0,053	kg/kg Butanol
Butanol	2.500	2.500	2.500	kg/h

Tabelle 6.7: Techno-ökonomische Parameter der Butanol-Fermentation.

Szenario	Basic	Intermediate	Advanced	
	2020	2030	2050	
Parameter				Einheit
CAPEX*	36.000.000	36.000.000	36.000.000	€/a
0&M**	620.000	620.000	620.000	€/a

* Ableitung von LanzaTech Anlage in Belgien

https://www.biofuels digest.com/bdigest/2015/07/13/steels-big-dog-jumps-into-low-carbon-fuels-arcelor mittal-lanzate ch-prime tals-technologies-to-construct-96 m-biofuel-production-facility/

 $https://process design.mccormick.northwestern.edu/index.php/Estimation_of_production_cost_and_revenue$

 $^{^{**}}$ 90 % der Kosten sind Raw Materials Costs; 10 % der Kosten sind Utilitykosten (O&M)

Verwendete ecoinvent-Datensätze (ecoinvent 3.6):

DIRECT AIR CAPTURE

- aluminium, cast alloy; market for aluminium, cast alloy [GLO]
- polyethylene, high density, granulate; market for poly ethylene, high density, granulate [Euro...]
- chromium steel pipe; market for chromium steel pipe [GLO]
- stone wool, packed; market for stone wool, packed [GLO]
- steel, low-alloyed; market for steel, low-alloyed [GLO]
- copper; market for copper [GLO]
- ethylene glycol, at plant [RER]
- anionic resin; market for anionic resin [GLO]
- concrete, sole plate and foundation; market for concrete, sole plate and foundation [RoW]
- reinforcing steel; market for reinforcing steel [GLO]
- sand; market for sand [GLO]
- gravel, crushed; market for gravel, crushed [RoW]

CO₂-ELEKTROLYSEUR

- aluminium, cast alloy; market for aluminium, cast alloy [GLO]
- tetrafluoroethylene; market for tetrafluoroethylene [GLO]
- titanium, primary; market for titanium, primary [GLO]
- silver; market for silver [GLO]
- steel, chromium steel 18/8; market for steel, chromium steel 18/8 [GLO]
- accrylonitrile-butadiene-styrene copolymer; market for acrylonitrile-butadiene-styrene copolymer [GLO]
- copper; market for copper [GLO]
- inverter, 500kW; market for inverter, 500kW [GLO]
- graphite; market for graphite [GLO]

BUTANOL-FERMENTATION

- concrete, sole plate and f..._market for concrete, sole plate and foundation [CH]
- steel, unalloyed market for steel, unalloyed [GLO]
- steel, chromium steel 18 / 8..._market for steel, chromium steel 18 / 8, hot rolled [GLO]
- steel, low-alloyed, hot rolled_market for steel, low-alloyed, hot rolled [GLO]
- diesel, burned in building machine_market for diesel, burned in building machine [GLO]
- waste concrete, not reinforced_market for waste concrete, not reinforced [Euro...]
- fatty alcohol_market for fatty alcohol [GLO]

PEM-ELEKTROLYSE (siehe Kapitel 7.2)

6.3 PME-Polymere

Tabelle 6.8: Technische Prozessparameter der zukünftigen Synthese von Linearen Acetalen.

Edukte	Ethylenglykol, Wasserstoff und Kohlenstoffdioxid
Gesamtumsatz	95 %
Umsatz im geraden Durchgang	50 %
Wärmebedarf	34 kJ / kg lineares Acetal (Distillative Trennung von Diol und Monomer)

6.3.1 Life Cycle Assessment

Tabelle 6.9: Technologiemix Proplyenoxid.

Technologie	Grundlage Prozessdaten	Anteil
Chlorhydrinverfahren mit Natronlauge	GaBi Datenbank	22 %
Chlorhydrinverfahren mit Kalkmilch	GaBi Datenbank	22 %
Oxiran-Verfahren	GaBi Datenbank	16 %
HPPO-Verfahren	Covestro	5 %
PO-SM-Verfahren	Covestro	34 %

Tabelle 6.10: Verwendete Datensätze.

Prozess	Verwendete Datensätze
Polyol-Synthese	Propylenoxid siehe Tabelle 6 9 RER: market for propylene glycol, liquid ecoinvent 3.6 RER: market for heat, from steam, in chemical industry ecoinvent 3.6 RER: market for compressed air, 700 kPa gauge ecoinvent 3.6 RER: market for nitrogen, liquid ecoinvent 3.6 RER: market for water, completely softened ecoinvent 3.6 GLO: market for chemical factory, organics ecoinvent 3.6
Paraformaldehyd-Synthese	RER: market for heat, from steam, in chemical industry ecoinvent 3.6
Methano-Synthese	RER: market for heat, from steam, in chemical industry ecoinvent 3.6 DE: market for natural gas, high pressure ecoinvent 3.6 GLO: market for methanol ecoinvent 3.6
Lineare-Acetal-Synthese	GLO: market for ethylene glycol ecoinvent 3.6 RER: market for heat, from steam, in chemical industry ecoinvent 3.6
Direct Air Capture	Siehe Biologische Umwandlung zu Butanol
PEM Elektrolyse	Siehe PEM Elektrolyse

6.3.2 Techno-ökonomische Analyse

Tabelle 6.11: Rohstoffpreise.

Rohstoffe	Kosten	Einheit	Quelle
Propylenoxid	1,4	€/kg	[41]
Glycerin	0,73	€/kg	[41]
Ethylenglycol	0,67	€/kg	https://www.alibaba.com/product- detail/good-quality-ethylene-glycol-used- for_1600126555168.html?spm=a2700. galleryofferlist.normal offer. d_title.19bc3691P55MVj&s=p

Tabelle 6.12: Techno-ökonomische Parameter Methanol (MeOH) Anlage pFA-PtX 20 kt/a Anlage [42].

	Menge / Kosten	Einheit
Investitionskosten	8.284.000	€
Wasserstoff (H ₂)	0,188	kt _{H2} / kt _{MeOH}
Kohlenstoffdioxid (CO ₂)	1,37	kt _{CO2} / kt _{MeOH}
Elektrizität	281,9	MWh / kT _{MeOH}
Kühlwasser (KW)	91,42	kt _{KW} / kt _{MeOH}
Schmutzwasser (SW)	0,561	kt _{SW} / kt _{MeOH}
Arbeiter	16	Personen

Tabelle 6.13: Techno-ökonomische Parameter Methanol (MeOH) Anlage pFA-fossil 1000 kt/a Anlage [42].

	Menge / Kosten	Einheit
Investitionskosten	123.600.000	€
Erdgas (EG)	6.640	MW_{EG} / kt_{MeOH}
Wärme	1.710	MW _{EG} / kt _{MeOH}

Tabelle 6.14: Techno-ökonomische Parameter Paraformaldehyd (pFA) Anlage pFA-fossil und pFA-PtX 20 kt/a Anlage [43], [44], [44].

	Menge / Kosten	Einheit
Investitionskosten	1.694.000	€
Methanol (MeOH)	1,462	kT _{MeOH} / kT _{pFA}
Wasser (W)	0,657	kT _W /kT _{pFA}
Luft (L)	2,6933	kT _L /kT _{pFA}
Elektrizität	33,89	MWh / kT _{pFA}
Kühlwasser (KW)	122,16	kT _{KW} / kT _{pFA}
Dampf (D)	1702,58	kT _D /kT _{pFA}
Arbeiter	18	Personen

Tabelle 6.15: Techno-ökonomische Parameter Polyol Anlage konventionell 50 kt/a Anlage [41].

	Menge / Kosten	Einheit
Investitionskosten	6.750.000	€
Propylenoxid (PO)	0,968	kT _{PO} /kT _{PME}
Glycerin (G)	0,032	kT _G / kT _{PME}
Elektrizität	19,84	MWh / kT _{PME}
Kühlwasser (KW)	17,85	kT _{KW} /kT _{PME}
Schmutzwasser (SW)	0,0002	kT _{SW} / kT _{PME}
Arbeiter	18	Personen

Tabelle 6.16: Techno-ökonomische Parameter Polyol Anlage pFA-fossil/ pFA-PtX 50 kt/a Anlage (abhängig vom Molekulargewicht) [41].

	Menge / Kosten	Einheit
Investitionskosten	6.750.000	€
Propylenoxid (PO)	0,55 bis 0,9	kT _{PO} / kT _{PME}
Paraformaldehyd (pFA)	0,1 bis 0,45	kT _{pEA} / kT _{PME}
Elektrizität	19,84	MWh / kT _{PME}
Kühlwasser (KW)	17,85	kT _{KW} / kT _{PME}
Schmutzwasser (SW)	0,0002	kT _{SW} / kT _{PME}
Arbeiter	18	Personen

Tabelle 6.17: Techno-ökonomische Parameter LA-PtX (low TRL).

	Menge	Einheit
Ethylenglycol (EG)	0,91	kT _{EG} / kT _{LA}
Wasserstoff (H ₂)	0,03	kT _{H2} /kT _{LA}
Kohlenstoffdioxid (CO ₂)	0,32	kT _{CO2} /kT _{LA}
Wärme	9444,4	kWh/kT _{LA}

Tabelle 6.18: Techno-ökonomische Parameter Polyol Anlage LA-PtX 50 kt/a Anlage (abhängig vom Molekulargewicht) [41].

	Menge / Kosten	Einheit
Investitionskosten	6.750.000	€
Propylenoxid (PO)	0,55 bis 0,9	kT _{PO} /kT _{PME}
Lineare Acetale (LA)	0,1 bis 0,45	kT _{LA} /kT _{PME}
Elektrizität	19,84	MWh / kT _{PME}
Kühlwasser (KW)	17,85	kT _{KW} /kT _{PME}
Schmutzwasser (SW)	0,0002	kT _{SW} /kT _{PME}
Arbeiter	18	Personen

6.4 Potenzialanalyse

6.4.1 Annahmen zur Nachfrage von FT-Naphtha

Die zeitliche Entwicklung für die Nachfrage nach reinem Naphtha ist prinzipiell schwierig einzuschätzen, da sich die zeitliche Entwicklung des Raffineriesektors, in dem der wesentliche Absatz von Naphtha liegt, aus heutiger Sicht kaum vorhersagen lässt. Folgende Annahme ist für Naphtha im Tool hinterlegt: Für Deutschland wurde der aktuelle Absatz von Rohbenzin als Grundlage für die Naphtha-Nachfrage verwendet [39]. Einer Prognose des nova-Instituts zufolge wird erwartet, dass in einer nachhaltigen Chemieindustrie Feinchemikalien primär über Biomasse (und CO₂-Fermentation) hergestellt und Massenchemikalien auf einer chemischen CO₂-Nutzung u.a. via Naphtha basieren werden. Für das Jahr 2050 wird ein Anstieg der Plastikproduktion um ca. 34 % erwartet, wobei zusätzlich mehr als doppelte (+123 %) durch chemisches Recycling abgedeckt werden [45]. Diese zeitliche Entwicklung wurde im Tool integriert und für die Zwischenjahre ein linearer Anstieg angenommen. Diese hinterlegten Zahlen sind daher nicht als direkte Nachfrage von Naphtha bis 2050 zu verstehen, sondern sollen die ungefähre Größenordnung für die gesamte Chemieindustrie abschätzen. Diese Zahlen, die in Tabelle 6-19 aufgeführt sind, dienen auch als Grundlage für die geplante Implementierung des Potenzials von u.a. Butanol. Aus der Tabelle geht außerdem hervor, dass der notwendige Strombedarf, um diese Nachfragen zu decken, in den nächsten Jahren sinkt, was auf eine verbesserte Effizienz der zugrundeliegenden technischen Prozesse zurückzuführen ist.

6.4.2 Detaillierte Ergebnisse zur Potenzialanalyse von FT-Naphtha

Tabelle 6.19: Potenzialanalyse – Angebotspotenziale an FT-Naphtha mit DAC oder Industriequellen.

FT-Naphtha [Mio. t]	2020	2030	2040	2050	Einheit
CO ₂ via DAC	0,00	0,00	5,62	11,99	
Wasserbedarf (Anteil an eneuerbaren Wasserressourcen)	0	0	105,88 (0,089 %)	225,87 (0,190 %)	[Mio.t]
CO ₂ via industrielle Punktquellen	0,00	0,00	5,69	11,37	
Wasserbedarf (Anteil an eneuerbaren Wasserressourcen)	0	0	107,25 (0,090 %)	223,15 (0,188 %)	[Mio.t]

 $\textbf{Tabelle 6.20:} \ \textbf{Potenzial analyse} - \textbf{Nach frage an Benzin und Diesel und die dafür notwendigen Strommengen}.$

Naphtha	2020	2030	2040	2050	Einheit
Nachfragemengen	11,44	12,74	14,03	15,33	[Mio. t]
Strom (Gesamt) via DAC	695,71	691,85	740,59	780,99	[TWh]
Wind (on)	352	432	370	289	
Wind (off)	56	40	136	175	
PV	141	128	191	283	
Wasserkraft	34	24	12	9	
Biomasse	111	37	17	14	
Geothermie	1	31	15	12	
nicht erneuerbar	0	0	0	0	
Strom (Gesamt) via Punktquellen	653,42	684,47	725,33	772,15	[TWh]
Wind (on)	330	428	362	285	
Wind (off)	53	39	133	173	
PV	133	126	187	280	
Wasserkraft	32	24	11	9	
Biomasse	104	36	17	13	
Geothermie	0	31	14	11	
nicht erneuerbar	0	0	0	0	

7. ANHANG ZU KAPITEL 7

Energieträger für die Industrie

7.1 Entwicklung und Einordnung des Industriesektors

Tabelle 7.1: Energie- und Rohstoffbedarf in der Industrie in den Szenarien Basis und Import.

	Strom [TWh]						
	2020	2030	2040	2050			
Kohle	159,3	123,9	68,5	0			
Mineralöl	246,5	238,5	117,8	0			
Erdgas	257,8	217,4	163,9	0			
Sonstige	46,1	32,5	14,1	0			
Fernwärme	56,4	48,9	44,2	48,6			
Biomasse	70,7	120,7	133,0	137,5			
Solarthermie	0	0,2	17,6	20,0			
Strom ohne PtX	244,0	214,2	222,6	232,4			
PtG-Methan	0	1,7	34,6	192,0			
PtG-Wasserstoff	0	10,2	122,9	207,1			

Tabelle 7.2: Energie- und Rohstoffbedarf in der Industrie im Szenario 1,5 Grad.

	Strom [TWh]						
	2020	2030	2040	2050			
Kohle	159,3	23,7	9,1	0			
Mineralöl	246,5	202,3	96,5	0			
Erdgas	257,8	192,0	170,7	0			
Sonstige	46,1	8,9	2,2	0			
Fernwärme	56,4	33,2	27,3	47,8			
Biomasse	70,7	126,3	134,3	126,5			
Solarthermie	0	4,3	4,3	4,3			
Strom ohne PtX	244,0	236,1	238,0	238,3			
PtG-Methan	0	39,5	35,5	192,0			
PtG-Wasserstoff	0	39,7	155,3	206,4			

Tabelle 7.3: Energie- und Rohstoffbedarf in der Industrie im Szenario Verkehrswende.

	Strom [TWh]						
	2020	2030	2040	2050			
Kohle	159,3	128,2	67,5	0			
Mineralöl	246,5	241,5	120,9	0			
Erdgas	257,8	201,8	156,9	0			
Sonstige	46,1	33,9	14,3	0			
Fernwärme	56,4	48,6	42,4	50,1			
Biomasse	70,7	120,6	132,6	132,3			
Solarthermie	0	0	0	0			
Strom ohne PtX	244,0	215,8	227,1	237,1			
PtG-Methan	0	1,6	34,6	192,0			
PtG-Wasserstoff	0	4,2	119,8	207,1			

7.2 **PEM** Elektrolyse

Tabelle 7.4: Prozessparameter PEM Elektrolyse.

Parameter	2020	2030	2050	Einheit
Anlagengröße	0,25; 1; 10	0,25; 1; 10	0,25; 1; 10	MW
Stack Lebensdauer	40.000	56.000	80.000	h
H ₂ -Ausgangsdruck	30	30	30	bar
Wasserbedarf	9	9	9	kg H ₂ O/kg H ₂
Strombedarf	48,7	44,7	41,3	kWh/kg H ₂
Ir-Loading	2	0,2	0,2	mg lr/cm ²
Specific Ir-Loading	852	27,8	10,7	μg Ir/kg H ₂

Verwendete ecoinvent-Datensätze (ecoinvent 3.6):

PEM STACK

- RER: market for Titanium dioxide
- RER: production Tetrafluoroethylene
- GLO: production Solvent, organic
- DE: selective coating, copper sheet, sputtering
- RER: market for sulfuric acid
- GLO: market for Titanium, primary
- RER: deep drawing, steel, 650 kN press, automode
- RER: production Phenolic resin
- GLO: carbon fibre reinforced plastic, injection moulded
- RoW: textile production, cotton, weaving *
- GLO: market for Platinum
- GLO: market for Carbon black
- RER: thermoforming, with calendering
- RER: production Polysulfide, sealing compound
- RER: processing Injection moulding
- RER: production Sulfur trioxide
- RER: production Fleece, polyethylene
- GLO: production Polyphenylene sulfide
- GLO: market for Steel, chromium steel 18 / 8
- RER: processing Wire drawing, steel
- RoW: sinter production, iron *

BOP & H2-REINIGUNG

- GLO: market for Steel, low-alloyed, hot rolled
- GLO: market for Electronics, for control units
- GLO: market for Tetrafluoroethylene
- CH: production Pump, 10kW *
- DE: market for concrete block Concrete block
- GLO: market for Intermodal shipping container, 20-foot oder 40-foot
- GLO: market for Steel, chromium steel 18 / 8
- GLO: market for Steel, unalloyed
- IAI Area, EU27 & EFTA: market for Aluminium, primary, ingot
- GLO: market for Copper
- GLO: market for Platinum
- Row: activated carbon production, granular from hard coal Activated carbon, granular

BETRIEB VON PEM

- Europe without Switzerland: water production, deionised Water, deionised
- RER: market for sodium silicate, solid Sodium silicate, solid
- GLO: market for Methanol
- RoW: market for Ammonia, liquid
- RER: market for Nitrogen, liquid

^{*}Diese Datensätze werden als Proxy verwendet und wurden weiterverarbeitet.

7.3 Glasherstellung

7.3.1 Prozessbeschreibung

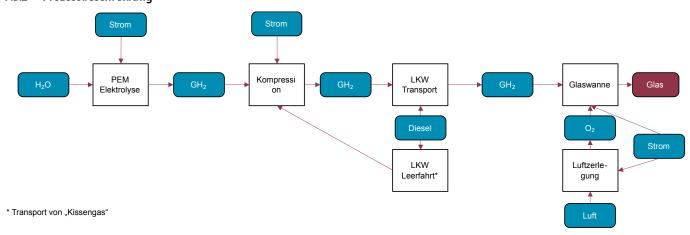


Abbildung 7: Alternativer Prozess zur Herstellung von Spezialglas durch Befeuerung mit Wasserstoff. In 200 km Entfernung wird Wasserstoff durch PEM-Elektrolyse produziert, komprimiert und per LKW zum Ort der Spezialglasproduktion befördert.

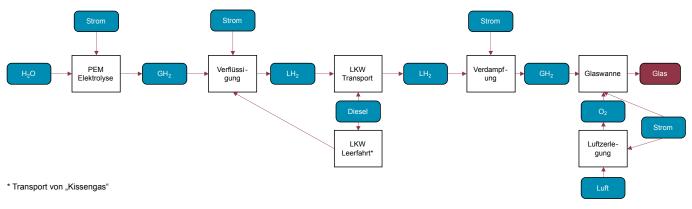


Abbildung 7: Alternativer Prozess zur Herstellung von Spezialglas durch Befeuerung mit Wasserstoff. In 200 km Entfernung wird Wasserstoff durch PEM-Elektrolyse produziert, verflüssigt per LKW zum Ort der Spezialglasproduktion befördert. Im Anschluss wird der Wasserstoff verdampft, um der Glaswanne zur Verfügung gestellt zu werden.

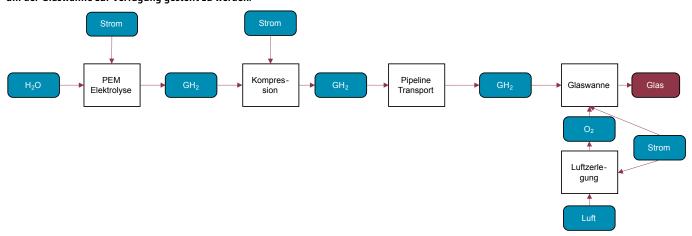


Abbildung 7: Alternativer Prozess zur Herstellung von Spezialglas durch Befeuerung mit Wasserstoff. In mehr als 200 km Entfernung wird Wasserstoff durch PEM-Elektrolyse produziert, komprimiert und per Pipeline zum Ort der Spezialglasproduktion befördert.

Tabelle 7.5: Technische Parameter Hydrierung.

	Wert	Einheit	Quelle
Kapazität	12	t/d	Techn. AP
Temperaturniveau	250	°C	Techn. AP
Lebensdauer Katalysator	4	a	Techn. AP
Strombedarf	0,5	kWh/kg H ₂	Techn. AP
Nutzbare Reaktionswärme	8,1	kWh/kg H ₂	Techn. AP

Tabelle 7.6: Technische Parameter unterschiedlicher Umwandlungskomponenten für den Wasserstofftransport.

	Ve	Verflüssigung Hy		Hydrierung		Dehydrierung			Einheit							
Quelle	[46-4		[46-48]		[46-48]		[48]		[48]		[48]		[48]		[48]	
Jahr	2020	2030	2050	2020	2030	2050	2020	2030	2050							
Strombedarf	10.3	8.53	6.76	0.5		0.18		0.18	kWh _{EI} /kgH ₂							
Wärmebedarf			0	0		0		0		:	11,6 (9) *	kWh _{Heat} / kgH ₂				
Wärmeabgabe		0		8.16						0	kWh _{Heat} / kgH ₂					
H ₂ -Verluste	1,65		1,65		0,1				0	%						

^{* 11.6} kWh / kg $_{\rm H_2}$ für industrielle Abwärme; 9 kWh / kg $_{\rm H_2}$ für elektrische Heizelemente

Tabelle 7.7: Technische Parameter des LKW-Transports.

	Wert	Einheit	Quelle
Straßendistanz	200	km	Annahme
Durchschnittsgeschwindigkeit	50	km/h	[49]
Lebensdauer Lkw	8	a	[49]
Betriebstunden Lkw& Auflieger	2.000	h/a	[49]
Lebensdauer Auflieger	12	a	[49]

Tabelle 7.8: Technische Parameter unterschiedlicher Transportkomponenten.

	GH_2		LH ₂		LOHC		Einheit	Quelle			
	2020	2030	2050	2020	2030	2050	2020	2030	2050		
Kapazität Lkw	1.200	1.400	1.400	3.500	3.900	4.300	1.530	1.620	1.620	kg _{H2}	[49]
Druckniveau	500		1		1		1	bar	[49]		
Be- und Entladzeit	1,5		3		1		1	h			
Verbrauch Diesel			35	32		32		I _{Diesel} /100km			

Tabelle 7.9: Technische Parameter Dehydrierung.

	Wert	Einheit	Quelle
Temperaturniveau Dehydrierung	300	°C	Techn. AP
Druckniveau Dehydrierung	1,5-2,0	bar	Techn. AP
Vollständigkeit der Dehydrierung	85	%	Techn. AP
Lebensdauer Katalysator	4	a	Techn. AP
Strombedarf Dehydrierung	0,18	kWh/kg	Techn. AP
Wärmebedarf Dehydrierung	11	kWh/kg	Techn. AP
Druckniveau nach der Dehydrierung	2	bar	Techn. AP
DBT Verluste	0,1 % / Zyklus		[48]

Tabelle 7.10: Technische Parameter Spezialglasherstellung nach Angaben der technischen Arbeitspakete.

	Wert	Einheit
Wasserstoffbedarf	450	kg / h
Sauerstoffbedarf	4.100	kg / h
Strombedarf	600	kWh/h
Strombedarf Luftzerlegungsanlage	0,4	kWh/Nm³ ₀₂

7.3.2 Life Cycle Assessment

Verwendete Datensätze aus ecoinvent für die Hydrierung

- GLO: market for aluminium oxide
- GLO: market for steel, chromium steel 18/8
- GLO: market for aluminium, wrought alloy
- GLO: market for steel, unalloyed
- CH: stone wool production
- RER: market for epoxy resin, liquid
- CH: market for polyethylene terephthalate, granulate
- GLO: market for copper

Verwendete Datensätze aus ecoinvent für die LOHC Tanks

- GLO: market for steel, chromium steel 18/8
- GLO: market for aluminium, wrought alloy
- GLO: market for steel, unalloyed
- RER: market for epoxy resin, liquid
- CH: market for polyethylene terephthalate, granulate
- GLO: market for copper
- RER: cast iron production
- GLO: market for steel, low-alloyed

Verwendete Datensätze aus ecoinvent für die Dehydrierung

- GLO: market for aluminium oxide
- GLO: market for steel, chromium steel 18/8
- GLO: market for aluminium, wrought alloy

- GLO: market for steel, unalloyed
- CH: stone wool production
- GLO: market for copper
- RER: market for epoxy resin, liquid
- CH: market for polyethylene terephthalate, granulate

Verwendete Datensätze aus ecoinvent für die PSA

- GLO: market for steel, chromium steel 18/8
- GLO: market for steel, unalloyed
- GLO: market for copper
- CH: market for polyethylene terephthalate, granulate
- RER: market for lubricating oil

Sonstige Annahmen:

- Anteil recyceltes Platin an Katalysatoren: 95,57 % basierend auf [5]
- DBT Herstellung basierend auf [6]
- Bau Verflüssigungsanlage basierend auf [2]
- Bau Hochdruckwasserstofftanks (Typ IV) basierend auf [7]

7.3.3 Techno-ökonomische Analyse

Tabelle 7.11: Ökonomische Parameter unterschiedlicher Umwandlungskomponenten für den Wasserstofftransport.

	Verflüssigung		Hydrierung			Dehydrierung			Einheit	
Quelle	[46],[53]		[46],[53]		[48]					
	2020	2030	2050	2020	2030	2050	2020	2030	2050	
FCI-Basiswert	105 ₂₀₁₃		6,75	4,00	4,00	3,00	1,35	1,35	M€ ₂₀₁₈	
FCI-Größe	50		10		10	1		1	t _{H2} /d	
FCI-Skalierung			0,66	0,6		0,6		0,6		

Tabelle 7.12: Ökonomische Parameter des LKW-Transports.

	Wert	Einheit	Quelle
Investitionsausgaben LKW	160	k€	[49]
Betriebs-und Wartungskosten LKW	0,12	Inv./a	[49]
Kosten Diesel	1	€/I	
Maut	0,187	€/km	[54]
Betriebs- und Wartungskosten unterschiedlicher Auflieger	0,02	Inv./a	[49]

Tabelle 7.13: Ökonomische Parameter unterschiedlicher Transportkomponenten.

	GH ₂	LH ₂	LOHC	Einheit
Investitionsausgaben Auflieger	660	860	150 *	k€

 $[\]ensuremath{^*}$ Beinhaltet die Erstanschaffungsausgaben für den Auflieger und das DBT.

Tabelle 7.14: Kumulierte Wasserstoffgestehungskosten, simuliert mit dem Hydrogen Supply Chain Model (HSCM).

	2020	2030	2050	Einheit
Pipeline Hybrid		4,55	3,78	€/kg _{H2}
GH ₂ -LKW	4,88	5,17	4,60	€/kg _{H2}
LH ₂ -LKW	5,57	6,00	5,27	€/kg _{H2}
LOHC-Trailer o. WI	4,19	4,40	3,83	€/kg _{H2}
LOHC-Trailer m. WI	3,99	4,19	3,62	€/kg _{H2}

7.4 Akzeptanzuntersuchungen

7.5 Potenzialanalyse

7.5.1 Berechnungsgrundlagen zur Potenzialanalyse von grünem Wasserstoff

Tabelle 7.15: Betriebsparameter für die drei Elektrolysemöglichkeiten mittels Protonen-Austausch-Membran (PEM), Alkalische (AEL) und Festoxid-Elektrolyse (SOEC: solid oxide electrolyzer cell).

Stützjahr		2020			2030			2040			2050	
Elektrolysetechnologie	PEM	AEL	SOEC	PEM	AEL	SOEC	PEM	AEL	SOEC	PEM	AEL	SOEC
Betriebsstrom (kWh) vs. [kg H ₂]	54	52	41	51	48	39	49	46	39	47	44	39
Prozesswasser (kWh) vs. [kg H ₂]						11	[55]					

Tabelle 7.16: Potenzialanalyse – Angebotspotenziale an Wasserstoff.

Wasserstoff	2020	2030	2040	2050	Einheit
Angebotsmengen	0,00	0,00	5,11	9,07	[Mio. t]
Strom	0	0	201	357	[TWh]
Wasserbedarf (Anteil an eneuerbaren Wasserressourcen)	0	0	73,20 (0,062 %)	155,59 (0,131 %)	[Mio. t]

7.5.2 Annahmen zur Nachfrage von grünem Wasserstoff

Als chemisches Element kommt Wasserstoff in allen stofflichen Energieträgern vor und wird daher als Baustein für klimaneutrale Alternativen gesehen, welche sektorenübergreifend zum Einsatz kommen können. Vor diesem Hintergrund sind die für Wasserstoff hinterlegten Nachfragepotenziale als Richtgrößen und nicht als konkrete Mengenprognosen zu verstehen. Die Bundesregierung beschreibt in der NWS, dass derzeit ca. 55 TWh Wasserstoff für stoffliche Anwendungen genutzt werden. Bis zum Jahre 2030 soll ein Bedarf von bis zu 100 TWh gedeckt werden [56]. Für den Zeitraum bis 2050 wurden zur Veranschaulichung des größtmöglichen Wasserstoffbedarfs das Szenario B der Fraunhofer-Wasserstoff-Roadmap für Deutschland verwendet (800 TWh). In diesem Szenario kommen größere Anteile an stofflichen Energieträger zum Einsatz [57]. Der verhältnismäßig hoch prognostizierte Bedarf umschließt somit viele Sektoren, aber auch PtX-Produkte, deren Potenziale in diesem Tool auch direkt bestimmt werden könnten. Die genauen Resultate der Potenzialanalyse für Wasserstoff sind Tabelle 7.17 aufgelistet.

7.5.3 Detaillierte Ergebnisse zur Potenzialanalyse von grünem Wasserstoff

Tabelle 7.17: Potenzial analyse - Nach frage an Wasserstoff und die dafür notwendigen Strommengen.

Wasserstoff	2020	2030	2040	2050	Einheit
Nachfragemengen	1,7	3,3	13,7	24,0	[Mio. t]
Strom (Gesamt)	81	152	610	1.039	[TWh]
Wind (on)	41	95	304	384	
Wind (off)	7	9	112	233	
PV	16	28	158	377	
Wasserkraft	4	5	9	12	
Biomasse	13	8	14	18	
Geothermie	0	7	12	15	
nicht erneuerbar	0	0	0	0	

8. ANHANG ZU KAPITEL 8

Transportalternativen für Wasserstoff

8.1 Prozessbeschreibung

Tabelle 8.1: Technische Parameter der Dehydrierung an der Tankstelle, wenn unterschiedlich zur Dehydrierung für die Glasherstellung, Tabelle 7–9.

	Wert	Einheit	Quelle
Strombedarf PSA	0,044	kWh/kg	[58]
Wasserstoffverluste PSA*	52	g/kg _{H2}	Techn. AP
Druckniveau nach Dehydriereinheit	45	bar	Techn. AP

 $^{^{*}}$ Wasserstoffverluste werden zur Wärmegewinnung verbrannt

Tabelle 8.2: Technische Parameter Wasserstofftankstelle.

	Wert	Einheit
Tankvolumen ND Speicher	38	m³
Tankvolumen HD Speicher	37.5	m³
Temperaturniveau Vorkühlung	-20	°C
Strombedarf	2.8	kWh/kg

8.2 Life Cycle Assessment

In diesem Abschnitt werden nur die Komponenten beschrieben, die nicht bereits in Abschnitt 7.3.2 behandelt wurden.

Verwendete Datensätze aus ecoinvent für die PSA

- GLO: market for steel, chromium steel 18/8
- GLO: market for steel, unalloyed
- GLO: market for copper
- CH: market for polyethylene terephthalate, granulate
- RER: market for lubricating oil

9. ANHANG ZU KAPITEL 9

Vergleich der Einsatzmöglichkeiten für Wasserstoff

10. ANHANG ZU KAPITEL 10

Vergleich der Einsatzmöglichkeiten für Synthesegas

11. LITERATURVERZEICHNIS

- [1] A. Zaklan, J. Wachsmuth, D. Vicki, "EU ETS up to 2030: Adjusting the Cap in light of the IPCC1.5 °C Special Report and the Paris Agreement", DIW, Dessau-Roßlau, Jan. 2020. Zugegriffen: Juli 27, 2021. [Online]. Verfügbar unter: https://www.umweltbundesamt.de/publikationen/eu-ets-up-to-2030-adjusting-the-cap-in-light-of-the
- [2] Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit (BMU), "Klimaschutzplan 2050. Klimaschutzpolitische Grundsätze und Ziele der Bundesregierung", Nov. 2016. Zugegriffen: März 22, 2021. [Online]. Verfügbar unter: https://www.bmu.de/fileadmin/Daten BMU/Download PDF/Klimaschutz/klimaschutzplan 2050 bf.pdf
- [3] K. Purr u.a., "Wege in eine ressourcenschonende Treibhausgasneutralität: RESCUE -Studie", Umweltbundesamt (UBA), Dessau-Roßlau, 2019. Zugegriffen: Juli 27, 2021. [Online].

 Verfügbar unter: https://www.umweltbundesamt.de/sites/default/files/medien/1410/publikationen/rescue_studie_cc_36-2019_wege_in_eine_ressourcenschonende_treibhausgasneutralitaet_auflage2_juni-2021.pdf
- [4] Destatis, "Vorausberechneter Bevölkerungsstand: Deutschland, Stichtag, Varianten der Bevölkerungsvorausberechnung", 2019. https://www-genesis.destatis.de/genesis/online?sequenz=tabelleErgebnis&selectionname=12421-0001 (zugegriffen Juli 27, 2021).
- [5] International Energy Agency (IEA), "World Energy Outlook 2018", Paris, 2018. Zugegriffen: Apr. 01, 2021. [Online]. Verfügbar unter: https://www.iea.org/reports/world-energy-outlook-2018
- [6] C. Kost, S. Shammugam, V. Jülch, H.-T. Nguyen, T. Schlegl, "Stromgestehungskosten Erneuerbare Energien: März 2018", Fraunhofer-Institut für Solare Energiesysteme (ISE), Freiburg, März 2018. Zugegriffen: Apr. 01, 2021. [Online]. Verfügbar unter: https://www.ise.fraunhofer.de/de/veroeffentlichungen/studien/ studie-stromgestehungskosten-erneuerbare-energien.html
- [7] T. Bründlinger u.a., "Dena-Leitstudie Integrierte Energiewende", DENA, Berlin, Juli 2018. Zugegriffen: Juli 27, 2021. [Online]. Verfügbar unter: https://www.dena.de/fileadmin/dena/Dokumente/Pdf/9262 dena-Leitstudie Integrierte Energiewende Ergebnisbericht.pdf
- [8] M. Thema, F. Bauer, M. Sterner, "Power-to-Gas: Electrolysis and methanation status review", Renewable and Sustainable Energy Reviews, Bd. 112, S. 775–787, Sep. 2019, doi: 10.1016/j.rser.2019.06.030.
- [9] A. Buttler, H. Spliethoff, "Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review", Renewable and Sustainable Energy Reviews, Bd. 82, S. 2440–2454, Feb. 2018, doi: 10.1016/j.rser.2017.09.003.
- [10] S. Wilms, V. Lerm, S. Schäfer-Stradowsky, J. Sanden, P. Jahnke, und G. Taubert, "Heutige Einsatzgebiete für Power Fuels: Factsheets zur Anwendung von klimafreundlich erzeugten synthetischen Energieträgern", Deutsche Energie-Agentur GmbH (dena), Berlin, 2018. Zugegriffen: Apr. 01, 2021. [Online]. Verfügbar unter: https://www.ikem.de/wp-content/uploads/2018/11/9264_Heutige_Einsatzgebiete_fuer_Power_Fuels.pdf
- [11] P. Schmidt, W. Weindorf, A. Roth, V. Batteiger, und F. Riegel, "Power-to-Liquids: Potentials and Perspectives for the Future Supply of Renewable Aviation Fuel", Umweltbundesamt (UBA), Dessau-Roßlau, 2016.

 Zugegriffen: Apr. 01, 2021. [Online]. Verfügbar unter: https://www.umweltbundesamt.de/en/publikationen/power-to-liquids-potentials-perspectives-for-the
- [12] P. Schmidt, W. Zittel, W. Weindorf, T. Rakasha, und D. Goericke, "Renewables in transport 2050 Empowering a sustainable mobility future with zero emission fuels", in 16. Internationales Stuttgarter Symposium, M. Bargende, H.-C. Reuss, und J. Wiedemann, Hrsg. Wiesbaden: Springer Fachmedien Wiesbaden, 2016, S. 185–199. doi: 10.1007/978-3-658-13255-2 15.
- [13] Europäische Kommission, "In-Depth Analysis in Support of the Commission Communication COM(2018) 773:

 A Clean Planet for all A European long-term strategic vision for a prosperous, modern, competitive and climate neutral economy.", Brüssel, Nov. 28, 2018. Zugegriffen: Juli 27, 2021. [Online]. Verfügbar unter: https://ec.europa.eu/clima/sites/clima/files/docs/pages/com_2018_733_analysis_in_support_en_0.pdf
- [14] Rosemarie Benndorf u.a., "Treibhausgasneutrales Deutschland im Jahr 2050", Umweltbundesamt (UBA), Dessau-Roßlau, Okt. 2013. Zugegriffen: März 22, 2021. [Online]. Verfügbar unter: https://www.umweltbundesamt.de/sites/default/files/medien/376/publikationen/treibhausgasneutrales_deutschland_im_jahr_2050_langfassung.pdf
- [15] S. Lechtenböhmer, L. J. Nilsson, M. Åhman, und C. Schneider, "Decarbonising the energy intensive basic materials industry through electrification Implications for future EU electricity demand", Energy, Bd. 115, S. 1623–1631, Nov. 2016, doi: 10.1016/j.energy.2016.07.110.
- [16] Prognos, Öko-Institut, Wuppertal-Institut, "Klimaneutrales Deutschland. Zusammenfassung im Auftrag von Agora Energie-wende, Agora Verkehrswende und Stiftung Klimaneutralität". Nov. 2020. Zugegriffen: März 19, 2021.

 [Online]. Verfügbar unter: https://static.agora-energiewende.de/fileadmin/Projekte/2020/2020_10_

 KNDE/A-EW_192_KNDE_Zusammenfassung_DE_WEB.pdf.
- [17] M. Stork, W. Meindertsma, M. Overgaag, M. Neelis, "A competitive and efficient lime industry: Cornerstone for a Sustainable Europe", Brüssel, 2014. Zugegriffen: Apr. 01, 2021. [Online]. Verfügbar unter: https://www.eula.eu/wp-content/uploads/2019/02/A-Competitive-and-Efficient-Lime-Industry-Technical-report-by-Ecofys_0.pdf
- [18] A. Bandi, M. Specht, "Gewinnung von Methanol aus Biomasse", Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg, Baden-Württemberg, Aug. 2004. Zugegriffen: Apr. 01, 2021. [Online]. Verfügbar unter: https://www.ufop.de/files/9013/3918/4875/Metahnolgewinnung.pdf

- [19] T. Estermann, S. Pichlmaier, A. Guminski, C. Pellinger, "Kurzstudie Power-to-X: Ermittlung des Potenzials von PtX-Anwendungen für die Netzplanung der deutschen ÜNB", Forschungsstelle für Energiewirtschaft e.V. (FfE), München, 2017. Zugegriffen: Apr. 01, 2021. [Online]. Verfügbar unter: https://www.ffe.de/attachments/article/761/Kurzstudie%20Power-to-X.pdf
- [20] V. Bürger u.a., "Klimaneutraler Gebäudebestand 2050", Öko-Institut e.V., Freiburg, 06/2016, 2016. Zugegriffen: Apr. 01, 2021. [Online]. Verfügbar unter: https://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/climate_change_06_2016_klimaneutraler_gebaeudebestand_2050.pdf
- [21] Chemical Engineering, https://www.chemengonline.com/
- [22] Statistisches Bundesamt, www.destatis.de/ (zugegriffen Aug. 04, 2021).
- [23] Statista GmbH, www.statista.de (zugegriffen Aug. 04, 2021).
- [24] F. G. Albrecht, D. H. König, N. Baucks, R.-U. Dietrich, "A standardized methodology for the techno-economic evaluation of alternative fuels A case study", Fuel, Bd. 194, S. 511–526, 2017, doi: http://dx.doi.org/10.1016/j.fuel.2016.12.003.
- [25] Wasserentnahmeentgeltgesetz des Landes Nordrhein-Westfalen WasEG, [Online]. Verfügbar unter: https://recht.nrw.de/lmi/owa/br_bes_text?sg=0&menu=1&bes_id=5231&aufgehoben=N&anw_nr=2
- [26] Chemiepark Wulfen, [Online]. Verfügbar unter: www.chemiepark.de/fileadmin/chemiepark_de/content/dokumente/preisblatt_agb-e_ab_2020.pdf
- [27] K. Radtke u.a., WorldRiskReport 2019 Focus: Water Supply. Bündnis Entwicklung Hilft, Ruhr University Bochum Institute for International Lawof Peace and Armed Conflict (IFHV). Zugegriffen: Aug. 04, 2021. [Online]. Verfügbar unter: https://reliefweb.int/sites/reliefweb.int/files/resources/WorldRiskReport-2019_Online_english.pdf
- [28] Prognos AG, Fraunhofer ISI, GWS, iinas, "Energiewirtschaftliche Projektionen und Folgeabschätzungen 2030/2050 Dokumentation von Referenzszenario und Szenario mit Klimaschutzprogramm 2030 10. März 2020", März 2020. Zugegriffen: März 19, 2021. [Online]. Verfügbar unter: https://www.bmwi.de/Redaktion/DE/Publikationen/Wirtschaft/klimagutachten.pdf?__blob=publicationFile&v=8
- [29] F. C. Matthes, WWF Deutschland, Regionalisierung der erneuerbaren Stromerzeugung. 2018. [Online]. Verfügbar unter: https://www.oeko.de/fileadmin/oekodoc/Stromsystem-II-Regionalisierung-der-erneuerbaren-Stromerzeugung.pdf
- [30] R. Geres u.a., Roadmap Chemie 2050 auf dem Weg zu einer treibhausgasneutralen chemischen Industrie in Deutschland: eine Studie von DECHEMA und FutureCamp für den VCI. 2019. Zugegriffen: März 15, 2021. [Online]. Verfügbar unter: https://edocs.tib.eu/files/e01fn19/1682254917.pdf
- [31] Öko-Institut e.V. und Prognos AG, "Modell Deutschland. Klimaschutz bis 2050", Öko-Institut e.V. und Prognos AG, Basel/Berlin, Okt. 2009. Zugegriffen: März 22, 2021. [Online]. Verfügbar unter: https://www.oeko.de/uploads/oeko/oekodoc/971/2009-003-de.pdf
- [32] Bundesverband Sekundärrohstoffe, Entsorgung (BVSE), "Abfallbranche: CO2-Reduzierung Um 70 Prozent Bis 2050". https://www.bvse.de/aktuelles/nachrichten/977-abfallbranche-co2-reduzierung-um-70-prozent-bis-2050.html (zugegriffen Apr. 30, 2021).
- [33] The Boston Consulting Group (BCG), Prognos AG, "Klimapfade für Deutschland", Jan. 2018. Zugegriffen: März 22, 2021. [Online]. Verfügbar unter: https://www.prognos.com/sites/default/files/2021-01/20180118_bdi_studie_klimapfade_fuer_deutschland_01.pdf
- [34] European Environment Agency (EEA), "E-PRTR", European Pollulant Release and Transfer Register. https://prtr.eea.europa.eu/#/home (zugegriffen März 19, 2021).
- [35] T. Fröhlich, S. Blömer, D. Münter, und L-A. Brischke, "CO2-Quellen für die PtX-Herstellung in Deutschland Technologien, Umweltwirkung, Verfügbarkeit", Heidelberg, ifeu paper, Sep. 2019. Zugegriffen: März 22, 2021. [Online]. Verfügbar unter: https://www.ifeu.de/fileadmin/uploads/ifeu_paper_03_2019_CO2-Quellen-f%c3%bcr-PtX.pdf
- [36] C. Beuttler, L. Charles, J. Wurzbacher, "The Role of Direct Air Capture in Mitigation of Anthropogenic Greenhouse Gas Emissions", Front. Clim., Bd. 1, 2019, doi: 10.3389/fclim.2019.00010.
- [37] P. J. Flory, "Molecular Size Distribution in Linear Condensation Polymers 1", J. Am. Chem. Soc., Bd. 58, Nr. 10, S. 1877–1885, Okt. 1936, doi: 10.1021/ja01301a016.
- [38] V. Gold, Hrsg., The IUPAC Compendium of Chemical Terminology: The Gold Book, 4. Aufl. Research Triangle Park, NC: International Union of Pure and Applied Chemistry (IUPAC), 2019. doi: 10.1351/goldbook.
- [39] Mineralölwirtschaftsverband (MWV), "Jahresbericht 2019", Mineralölwirtschaftsverband (MWV), Berlin.

 Zugegriffen: März 23, 2021. [Online]. Verfügbar unter: https://www.mwv.de/wp-content/uploads/2019/11/MWV_
 Jahresbericht 2019 Web 191219.pdf
- [40] K. Zech u.a., "Drop-In-Kraftstoffe für die Luftfahrt", Bundesministerium für Verkehr und digitale Infrastruktur (BMVI). Zugegriffen: März 24, 2021. [Online]. Verfügbar unter: https://www.bmvi.de/SharedDocs/DE/Anlage/G/MKS/studie-drop-in-kraftstoffe-luftfahrt.pdf?__blob=publicationFile
- [41] C. Fernández-Dacosta u.a., "Prospective techno-economic and environmental assessment of carbon capture at a refinery and CO2 utilisation in polyol synthesis", Journal of CO2 Utilization, Bd. 21, S. 405–422, 2017, doi: 10.1016/j.jcou.2017.08.005.

- [42] A. Otto, "Chemische, verfahrenstechnische und ökonomische Bewertung von Kohlendioxid als Rohstoff in der chemischen Industrie", RWTH Aachen University, Aachen, 2015. [Online]. Verfügbar unter: https://juser.fz-juelich.de/record/202664/files/Energie Umwelt 268.pdf
- [43] G. J. Millar, M. Collins, "Industrial Production of Formaldehyde Using Polycrystalline Silver Catalyst", Ind. Eng. Chem. Res., Bd. 56, Nr. 33, S. 9247–9265, Aug. 2017, doi: 10.1021/acs.iecr.7b02388.
- [44] W. G. Hughes, S. Weiss, J. Lambiris, Huels America Inc., "Polymerisation von Formaldehyd", 1967
- [45] M. Carus, A. Raschka, "nova-Paper #10: Renewable Carbon is Key to a Sustainable and Future-Oriented Chemical Industry Langfassung". Zugegriffen: Aug. 04, 2021. [Online]. Verfügbar unter: https://renewable-carbon.eu/publications/product/nova-paper-10-renewable-carbon-is-key-to-a-sustainable-and-future-oriented-chemical-industry-%E2%88%92-full-version/
- [46] K. Stolzenburg und R. Mubbala, "Hydrogen Liquefaction Report", Dez. 2013. Zugegriffen: März 25, 2021. [Online]. Verfügbar unter: https://www.idealhy.eu/uploads/documents/IDEALHY_D3-16_Liquefaction_Report_web.pdf
- [47] A. Peschel, "Industrial Perspective on Hydrogen Purification, Compression, Storage, and Distribution", Fuel Cells, Bd. 20, Nr. 4, S. 385–393, Aug. 2020, doi: 10.1002/fuce.201900235.
- [48] VTT Technical Research Centre of Finland, "HySTOC A preliminary feasibility study", Jan. 2020. [Online]. Verfügbar unter: https://www.hystoc.eu/.cm4all/uproc.php/0/Public%20Deliverables/
 HySTOC-D8.3%20Preliminary%20feasibility%20study-Rev3-2020-01-17.pdf?cdp=a&_=16fc2e600b8
- [49] M. Reuß, T. Grube, M. Robinius, P. Preuster, P. Wasserscheid, und D. Stolten, "Seasonal storage and alternative carriers: A flexible hydrogen supply chain model", Applied Energy, Bd. 200, S. 290–302, Aug. 2017, doi: 10.1016/j.apenergy.2017.05.050.
- [50] S. Steger u. a., "Stoffstromorientierte Ermittlung des Beitrags der Sekundärrohstoffwirtschaft zur Schonung von Primärrohstoffen und Steigerung der Ressourcenproduktivität", S. 391.
- [51] P. Adametz, K. Müller, R. Lechner, S. Müller, M. Brautsch, und W. Arlt, "Energy and Carbon Foot Print Analysis of the Production of a Liquid Organic Hydrogen Carrier", S. 17.
- [52] A. Benitez u. a., "Ecological assessment of fuel cell electric vehicles with special focus on type IV carbon fiber hydrogen tank", Journal of Cleaner Production, Bd. 278, S. 123277, Jan. 2021, doi: 10.1016/j.jclepro.2020.123277.
- [53] U. Cardella, L. Decker, und H. Klein, "Roadmap to economically viable hydrogen liquefaction", International Journal of Hydrogen Energy, Bd. 42, Nr. 19, S. 13329–13338, Mai 2017, doi: 10.1016/j.ijhydene.2017.01.068.
- [54] "Mauttarife". https://www.toll-collect.de/de/toll_collect/bezahlen/maut_tarife/maut_tarife.html (zugegriffen Aug. 04, 2021).
- [55] F. Ausfelder, H. E. Dura, "Optionen für ein Nachhaltiges Energiesystem mit Power-to-X Technologien (1. Roadmap des Kopernikus-Projektes 'Power-to-X': Flexible Nutzung erneuerbarer Ressourcen", S. 168.
- [56] **Bundesministerium für Wirtschaft und Energie (BMWi)**, "Die Nationale Wasserstoffstrategie". https://www.bmwi.de/Redaktion/DE/Publikationen/Energie/die-nationale-wasserstoffstrategie.html (zugegriffen März 16, 2021).
- [57] C. Hebling u.a., "Eine Wasserstoff-Roadmap für Deutschland", Fraunhofer-Institute IMWS und IKTS, Karlsruhe und Freiburg, Okt. 2019. Zugegriffen: März 31, 2021. [Online]. Verfügbar unter: https://www.fraunhofer.de/content/dam/zv/de/ueber-fraunhofer/wissenschaftspolitik/Positionen/Fraunhofer-Wasserstoff-Roadmap.pdf
- [58] T. loannides, "Hybrid Membrane Pressure Swing Adsorption (PSA) Hydrogen Purification Systems (Contract No 278538)", New Energy World Joint Undertaking, Fuel Cells and Hydrogen for Sustainability., 2012.